The flu epidemic of yesteryear: the role of radiology in 1918–20

adrian thomas

Dr Adrian Thomas

100 years ago the UK was facing a fast-moving outbreak of epidemic influenza pneumonia, known as the “Spanish Flu”.

Radiology played an important part in diagnosis, although the crisis was without the scientific knowledge, strategic management and communications we have today. Here, Dr Adrian Thomas explores the six patterns of infection in this unpredictable and powerful disease.

 

 

Radiology is playing a central role in the diagnosis of COVID-19 today, and 100 years ago was also playing an important role in the diagnosis and characterisation of the outbreak of epidemic influenza pneumonia of 1918–1920. A combination of fluoroscopy and radiography was then used, with the occasional utilisation of stereoscopy. The greatest pointer to a diagnosis of epidemic influenza pneumonia in a given patient was the presence of the epidemic, although there were some specific features to indicate the diagnosis. The etiological cause of influenza was not known at the time, being first discovered in pigs by Richard Shope in 1931.

Spanish flu

The epidemic of 1918 far exceeded previous ones in its intensity. It had a high mortality in young adults with the very young and very old being comparatively immune. The associated pneumonia was particularly virulent. In the case of the troopship The Olympic (sister ship of The Titanic) there were 5,951 soldiers on board. Initially there were 571 cases of acute respiratory disease, but within 3 weeks there were 1,668 cases. Of these, 32% had pneumonia, of which 59% died. In any locality the duration of the epidemic was from between 6–8 weeks, and approximately 40% of the population was affected (Osler, 1930).

Six patterns of infection were identified, with correlation of clinical, radiological and post-mortem findings (Sante, 1930., Shanks, et al. 1938). Dr Leroy Sante, the pioneer radiologist from St Louis, described epidemic influenza pneumonia as “the most lawless of the chest infections.” Abscess formation was seen frequently, and was commonly of the small and multiple type. Radiological changes were seen developing day by day, and clinical resolution needed at least six–eight weeks since there had commonly been lung destruction and healing by fibrosis needed to occur.

The patterns were:

Type 1: Peribronchial invasion with infiltrates that enlarge and become confluent forming small areas of consolidation (figures 1 & 2, below). This was not confined to one lobe, but could appear in all lobes as a true bronchopneumonia. This was similar in appearance to ordinary bronchopneumonia.

1Type 1, Influenza bronchopneumonia

Figure 1

2Type 1, Influenza bronchopneumonia_Viewed as from behind

Figure 2

Type 2: Peribronchial invasion with infiltrates that enlarge and become confluent to form solidification of an entire lobe (figure 3, below). The changes remained confined to a single lobe. It was viewed as a true bronchopneumonia but with a lobar distribution (“pseudolobar pneumonia”). Different lobes may be invaded one after another. The pseudolobar pattern was the commonest type, and could resolve without further spread. The presence of previous isolated infiltrates would distinguish this type from common lobar pneumonia. There was a tendency to break down with extensive cavitation.

3Type 2, or pseudo-lobular

Figure 3

Type 3: This starts as blotchy infiltrates that coalesced to form a general haziness over a part of a lung, suggesting a haematogenous origin (figures 4 and 5, below). At post-mortem this was found to be an atypical lobular pneumonia, a “diffuse pneumonitis”, that was so commonly seen during the influenza outbreak. It resembled the streptococcal (septic) pneumonia that was often seen in association with septicaemia when there was no epidemic. The spread was rapid, and the prognosis was poor. Death commonly occurred within the week.

4Type 3, resembling streptococcal (septic) pneumonia

Figure 4

5Type 3, resembling streptococcal (septic) pneumonia

Figure 5

Type 4: A type starting in the hilum and spreading rapidly into the periphery, the so-called “critical pneumonia” (figure 6, below). This was attended with a high mortality. Post-mortem showed a purulent and haemorrhagic infiltration around the larger bronchi. There was often marked cyanosis.

6Type 4, the so-called “critical pneumonia

Figure 6

Type 5: This started in the dependent part of the lungs, with continuous upwards spread (figures 7a and b, below). This was an atypical lobular pneumonia, there was no associated pleural fluid, and it was usually fatal. Initial infection in the costo-phrenic angle spread within 24 hours to involve the lower lung, and death occurred within 48 hours. Clinical features included extreme prostration, high temperature, and delirium. This pattern with rapidly advancing consolidation was seldom seen in other conditions.

7a Type 5. This started in the dependent part of the lungs

Figure 7a

7b Type 5. A film taken 12 hours after 7a

Figure 7b

Type 6. A true lobar pneumonia was only seen rarely.
The prognosis of epidemic influenza pneumonia was difficult to determine. So, as an example, a patient who was resolving would suddenly have changes extend into the other lung and then die. Another patient with successive involvement of all lobes could recover completely. A patient with only minor lung involvement might die, and another with extensive consolidation would recover completely.

Radiologists continue to be in the front line in the treatment of infectious diseases, and although our modalities are now more advanced than a century ago, their contributions remain essential. It is also noteworthy that the simple CXR also remains central.

Figures:

1. Type 1, Influenza bronchopneumonia. Image seen as a positive.

2. Type 1, Influenza bronchopneumonia. Peribronchial clusters of infiltration, with no relation to lobar architecture. Viewed as from behind.

3. Type 2, or pseudo-lobular.

4. Type 3, resembling streptococcal (septic) pneumonia. Image seen as a positive.

5. Type 3, resembling streptococcal (septic) pneumonia. Blotchy ill-defined infiltrates which coalesce to form a general haziness. Viewed as from behind.

6. Type 4, the so-called “critical pneumonia.”

7a. Type 5. This started in the dependent part of the lungs, and this early film shows consolidation in the costophrenic angle (black arrow).

7b. Type 5. A film taken 12 hours after 7a. The lower right lung is consolidated, and the patient died 12 hours later. Post mortem showed a solid lung with no effusion.
Readings:

Osler, William. (1930) The Principles and Practice of Medicine. 11th Edition, Thomas McCrae (Ed.). London: D Appleton.

Sante, Leroy. (1930) The Chest, Roentgenologically Considered. New York: Paul B Hoeber.

Shanks, S Cochrane., Kerley, Peter., Twining, Edward W. (Eds). (1938) A Textbook of X-ray Diagnosis by British Authors. London: H. K. Lewis.

 

Dr Adrian Thomas FRCP FRCR FBIR, BIR Honorary Historian

About Dr Adrian Thomas

Dr Adrian Thomas is a semi-retired radiologist and a visiting professor at Canterbury Christ Church University. He has been President of the Radiology Section of the Royal Society of Medicine, and of the British Society for the History of Medicine. He is the Honorary Historian to the British Institute of Radiology. He has had a long-term interest in role development in radiography, and teaches postgraduate radiographers.

Adrian has written extensively on the history of radiology writing many papers, books and articles. He has, with a colleague, written a biography of the first female radiologist and female hospital physicist: Adrian Thomas and Francis Duck: Edith and Florence Stoney, Sisters in Radiology (Springer Biographies) Springer; 1st ed. 2019 edition (1 July 2019).

© Thomas / 2020

Help! I’m (not) a leader, get me out of here!

Elizabeth Loney

Do you ever wonder how you got where you are? Are you sure you see yourself as others do? 

Dr Elizabeth Loney, Consultant Radiologist and Associate Medical Director,  reflects on imposter syndrome and offers tips on how to manage it.

 

How many times have you sat in a meeting and looked around the room thinking, “what on earth am I doing here? Everyone else knows way more about this than I do, and they know it!”

The first senior management meeting that I attended started with reviewing the minutes of the last. As I read through the document, I realised I had no idea what much of it said—death by TLAs (three letter acronyms!). I nudged the person next to me and said, “what does … stand for?” They shrugged their shoulders and whispered to the person on their other side “what does … mean?” It took five people down the line before someone knew what it was! I found that reassuring, but also slightly scary. The fact that other people were in the same boat made me feel less like an idiot, but at the same time, how could such a senior group not understand the jargon and why had they said nothing? So… lesson one: be curious and not afraid to ask questions. You’re probably just asking what most people are thinking anyway!

About six months ago I started the Nye Bevan Programme with the NHS Leadership Academy. If I pass, I will allegedly have proven myself ready for an NHS executive leadership role. There are around 48 others in my cohort, all senior leaders in different areas of the NHS. What the heck am I doing there?! I’m just a doctor, not a leader. I might sort things out for people as Clinical or Divisional Director but I’ve never felt more like a “public servant” than when in a “leadership role”. I had serious Imposter Syndrome. The first residential was entitled “Knowing Yourself and Others” and was all about the impact you have on others as a leader and why you act as you do—unconscious bias and all. It was a traumatic experience for me. I did so much “reflecting” I felt like a mirror! I couldn’t do it—just give me a few scans to report! I’m not a leader—get me out of here. However, I got chatting to others that week and realised that pretty much everyone else in the room felt the same. Most people suffer with this issue at some time—and if you don’t, why not? A little humility is a wonderful thing.

Are you affected by low self-confidence? At times like this, seeking peer feedback can be helpful. As part of the course I had to send out a questionnaire asking others I had led on a work programme for anonymous feedback. That was scary! I asked questions including “what do I do well?” and “what could I do better?” I half expected to be slated but, to my surprise, the feedback was really positive. My view of myself was distorted. I may not see myself as a leader but apparently others do! So… lesson two: when you feel like an imposter remember that many others in the room feel the same way. There must be a reason why you are there. What do others see in you, that you do not? What is your role in the group? ‘If not you… who?’

So ends my first blog as Chair of the BIR Leadership and Management SIG… another position I find myself in wondering how I got here! What do I know about leadership? I’m not an expert. However, I do have a passion for self-improvement and a curious nature. Why not join me on my journey to “managerial enlightenment”? We have such a lot to learn from one another.

I hope to meet you in person at the BIR Annual Congress where we will gain inspiration from excellent speakers covering topics on “practical” and “personal” management, including an interactive session by Philips based on their “Insights” programme—expect to be up on your feet! We are also holding our first annual event on leadership, “Leadership 2020” on 31 January 2020. Come along and join us for more opportunities to learn, network and ask questions.

See you there!

Dr Elizabeth Loney,

Chair of the BIR Leadership and Management Special Interest Group

BIR LEADERSHIP 2020 event 31 January 2020

More about the BIR leadership and management SIG here 

Join the open SIG here  (BIR member only)

About Dr Elizabeth Loney

Dr Elizabeth Loney is Chair of the BIR Leadership and Management Special Interest Group (SIG). She is a Consultant Radiologist and Associate Medical Director and Consultant Radiologist at Calderdale and Huddersfield NHS Foundation Trust.

 

Getting the taste for radiology

Deepsha Agrawal 3

 

Dr Deepsha Agrawal reflects on how a taster week at her local hospital was the first step on her journey to qualifying as a radiologist.

 

 

Having read several narratives of Röntgen’s glowing cardboard screen and the mysterious Crooke’s tube, I have always found myself fascinated by radiology. I often wondered what radiologists do in their secretly tucked away dark rooms and how those digital blueprints and monochrome scans make sense. The evolution of radiology from giant X-ray tubes to present day dynamic scans and angio seals, prompted me to consider a career in radiology. And so valuable was my taster week experience that my interest has now transformed into a drive to become a radiologist.

I am an international medical graduate doing my Foundation Year 2 Clinical Fellowship. Although I had done a two week elective in radiology during my internship (the Indian equivalent of FY1), I was keen on doing a taster week before entering specialty training in the UK.

How I arranged it:

A taster week can be a great opportunity to give a useful insight into a specialty and connect to trainees and consultants who are currently working in the specialty. I arranged my taster week by emailing a radiology consultant in my hospital who kindly accepted and set things up for me promptly.

After a quick discussion with the radiology consultant, I emailed my rota manager who was very generous to grant me study leave for a week.

My experience:

Deepsha Agrawal 1My week was spread between plain film, ultrasound, CT, MRI and some interventional radiology sessions. While the plain film sessions were useful to carry into my regular job, the IR experience in the theatre was quite thrilling. Interventional radiologists are clinicians with those magic wands (catheters) who practice some seemingly futuristic medicine. It was an absolutely inspiring experience for me.

Spending a week in radiology gave me a lot of clarity on my doubts and misconceptions about the specialty.

Artificial intelligence (AI) won’t replace radiologists: Every time I had expressed my interest in radiology, I was told that it will soon be replaced by AI and radiologists will be left with no jobs. My experience tells me that AI will only alter the job of a radiologist and not replace it. Radiologists do more than reading and interpreting images. They recreate the patient’s clinical story when they look at a scan. AI can recognize but never interpret an image.

Radiology is a core clinical specialty: I was under the impression that radiology is mainly technical and has only a slight clinical edge to it. During one of my initial sessions  I mentioned the same to a radiology consultant and amusingly but legitimately he got quite upset and told me there’s a reason it’s called “Clinical Radiology”. A week into radiology, I realised that there is in-depth clinical processing in radiology with every scan.

Radiologists touch the lives of their patients every day: It might be true that radiologists see fewer patients than an average clinician but with every scan interpretation a radiologist is affecting the life of a patient. They add value by not only interpreting the scans but also consulting with other physicians on diagnosis and treatment, treating diseases with intervention and relating findings clinically and from lab tests.

More recognition within the healthcare system: I was fortunate to attend a surgical and respiratory Multi-disciplinary Team Meeting (MDT) during the week. These meetings gave me insight into the role of a present day radiologist. The traditional view of the radiologist as a physician who sits in the dark room defining technical parameters of imaging procedures and interpreting diagnostic images is now outdated. Radiologists have now come to the forefront with multi-disciplinary meetings where they are valued and recognized for their opinion in deciding the course of treatment for patients.

Deepsha Agrawal 2Radiologists are happy people: Having rotated through various departments during my internship and experiencing a few departments in the NHS, I found a striking difference in how radiologists see their work. They work as a team, care for each other and are very encouraging. Don’t be surprised if your fellow consultant is making you a cup of coffee! Also, the trainees fairly support medical students and junior doctors in walking the path to enter specialty training. Overall, I felt that the happiness index of radiologists was higher than other specialists and they truly enjoy their work.

Although I entered as a slightly confused junior doctor, I have come out more aware and orientated to work towards a career in radiology with audits, academic projects and day-to-day learning ideas. In summary, I thoroughly enjoyed my taster week and am pleased with my experience. For a radiologist, no two days are the same. There is immense learning and fun in radiology. I am already dreaming of holding the needles and being on the dictaphone. I highly recommend a taster week to all junior doctors considering a career in this specialty.

I would like to add a special note of thanks to Dr. Amit Patel, Consultant Radiologist, Queen Elizabeth University Hospitals, Glasgow, who kindly accepted me as a taster week student and scheduled my sessions.

– Deepsha Agrawal, FY2 Clinical Fellow, Neurosurgery, Queen Elizabeth University Hospitals, Glasgow.


About Deepsha

I am an FY2 Clinical Fellow in Queen Elizabeth University Hospital in Glasgow. After graduating from India in 2018, I moved to the UK for further training with a keen interest in Radiology. My journey has been great so far and I look forward to bringing innovations to medicine as a radiologist.

Radiotherapy: 40 years from tracing paper to tomotherapy

NHS

Physicist Andy Moloney and Clinical Oncologist David Morgan reflect on how radiotherapy developed since their early careers

 

We first met in the autumn of 1981, when the NHS was, at 33 years from its inception, but a youngster. Andy had recently joined the Radiotherapy Physics staff at Nottingham General Hospital after graduating in Physics from the University of Nottingham, and David was returning to the clinical Department of Radiotherapy and Oncology after a year’s Fellowship at the Institut Gustave-Roussy in France. A firm friendship rapidly developed, one that continues to this day.

On reflection, joining the radiotherapy fraternity at that time was a leap of faith. The perceived wisdom amongst many of our scientific and clinical colleagues at the time was that this treatment technique was outdated and overshadowed by radical surgical procedures, new chemotherapy agents and biological modifiers poised to reduce radiotherapy to the history books.

picture 063This was a time when, in this Cinderella of specialties, physics planning was achieved by the superposition of two dimensional radiation plots (isodoses) ,using tracing paper and pencils, to produce summated maps of the distribution. The crude patient outlines were derived from laborious isocentric distance measurements augmented by the essential “flexicurve”. The whole planning process was slow and labour intensive fraught with errors and ridiculed by colleagues in the perceived prestigious scientific and clinical disciplines. The principal platform for external beam radiotherapy delivery, the Linear Accelerator (LinAc), had also reached something of a plateau of development, albeit with improved reliability, but few fundamental changes. Caesium tubes were transported from the “radium safe”, locked in an underground vault, to the operating theatre in a lead-lined trolley, where they were only loaded into “central tubes” and “ovoids” after the examination under anaesthetic (which was performed with the patient in the knee-chest position); they were then manually placed into the patient, who went to be nursed on an open ward, albeit behind strategically placed lead barriers.

For no sites outside the cranium was Computer Tomography (CT) scanning available. Magnetic Resonance Imaging (MRI) was still a vision seen only by a small number of enthusiasts.

All these limitations were met by a developing team of scientific and clinical enthusiasts believing in the future of radiotherapy if only technology could deliver solutions to address an improving understanding of the differing cancers and their radiobiology.

picture 066In the latter half of the eighties these solutions began to crystallise. Computers were being introduced across the NHS and their impact was not lost in radiotherapy. Pads of tracing paper were replaced with the first generation of planning computers. The simple “Bentley-Milan” algorithms could account for patient outlines accurately and speedily and optimising different beam configurations became practical. Consideration of Organs at Risk, as defined by the various International Commission on Radiation Units (ICRU) publications, became increasingly relevant. Recognition of the importance of delineating the target volumes and protecting normal tissue required improved imaging and this was provided by the new generation of CT scanners. In the nineties these were shared facilities with diagnostic radiology departments. However, the improvements provided by this imaging, enabling accurate 3-dimensional mapping of the disease with adjacent normal tissues and organs at risk, dictated their inclusion into every radiotherapy department soon after the millennium. The added bonus of using the grey scale pixel information, or Hounsfield numbers, to calculate accurate radiation transport distributions soon followed when the mathematical and computer technology caught up with the task. The value of MR and Positron Emission Tomography (PET) imaging was also recognised in the diagnosis, staging and planning of radiotherapy and the new century saw all of these new technologies embedded within the department.

Mould room technology was also improving with “instant” thermoplastic immobilisation shells replacing the uncomfortable plaster and vacuum forming methods. Custom shielding with low melting high density alloys was becoming routine and it was not long before these techniques were married with the emerging CT planning to provide “conformal” treatments.

picture 067LinAc technology also received added impetus. Computers were firstly coupled as a front end to conventional LinAcs as a safety interface to reduce the potential for “pilot error”. Their values were soon recognised by the manufacturers and were increasingly integrated into the machine, monitoring performance digitally and driving the new developments of Multi Leaf Collimators (MLC) and On Board Imaging (OBI).

The dominos for the radiotherapy renaissance were stacked up, but it needed the radiographers, clinicians and scientists to decide on the direction of travel. Computer power coupled with advanced electro-mechanical design had transformed MLC efficiency and resolution. Conventional conformal planning was now progressively superseded by sophisticated planning algorithms using merged CT and MR images. Intensity Modulated RadioTherapy (IMRT) had arrived in its evolving guises of multiple fixed field, dynamic arc therapy (RapidArc) or Tomotherapy. Whichever technique, they all offered the radiotherapy “Holy Grail” of providing three dimensional homogeneous dose distributions conformed to the Planning Target Volume (PTV) whilst achieving the required dose constraints for organs at risk and normal tissue preservation.

The tools had arrived, but an infrastructure to introduce these “toys” safely into a complex clinical background had also developed alongside. Quality standards (ISO9000), Clinical Trials, Multi Disciplinary Teams and Peer Review were governance mandates for all oncology departments and radiotherapy was leading the way. In forty years, radiotherapy had lost the “Cinderella” image and had been invited back to the clinical ball. Noticeably, breast and prostate adenocarcinoma constituted half of the radical workload.

The question remains of how and why did this transformation occur? Obviously the developing computer power and technology were the pre-requisites for many of the developments, but a key catalyst was the foresight of all of the radiotherapy family from which enduring friendships have been forged. The working lives of the clinicians and physicists involved in radiotherapy planning have probably changed more dramatically than those of any other medical and paramedical groups over the last 35 years.

We may have retired, but we still cogitate about the future direction and science behind this developing and essential cancer treatment and look forward to our younger colleagues enjoying their careers as much as we enjoyed ours.

 


About David Morgan

david morganDr David A L Morgan began training in Radiotherapy & Oncology as a Registrar in 1977, and in 1982 was appointed a Consultant in the specialty in Nottingham, continuing to work there until his retirement in 2011. He joined the BIR in 1980 and at times served as Chair of its Oncology Committee and a Member of Council. He was elected Fellow of the BIR in 2007. He is author or co-author of over 100 peer-reviewed papers on various aspects of Oncology and Radiobiology.

 

About Andrew Moloney

andy moloneyAndy Moloney completed his degree in Physics at Nottingham University in 1980 before joining the Medical Physics department at the Queens Medical Centre in the same city. After one year’s basic training in evoked potentials and nuclear medicine, he moved to the General Hospital in Nottingham to pursue a career in Radiotherapy Physics and achieved qualification in 1985. Subsequently, Andy moved to the new radiotherapy department at the City Hospital, Nottingham, where he progressed up the career ladder until his promotion as the new head of Radiotherapy Physics at the North Staffordshire Royal Infirmary in Stoke-on-Trent. Over the next twenty years Andy has acted as Clinical Director for the oncology department and served on the Radiation Physics and Oncology Committees at the BIR and was appointed a Fellow in 2007. He has been the author and co-author of multiple peer reviewed articles over the years prior to his retirement in 2017.

 

My first radiology job in the NHS

NHS

What does a jazz band, a ghost train and a figure in dark goggles have in common? They are all part of the NHS 70 memories of Professor Ralph McCready.

Ralph McCready

As a houseman I had the privilege of working for Professor Frank Pantridge, inventor of the defibrillator. I was fascinated by his catheter lab with the combination of physiology and radiology. So I decided to become a radiologist but was advised to go to England (from Northern Ireland) and obtain an impressive degree so that I could return if I wished. So I went to Guy’s Hospital, London to study for an MSc in Radiation Physics and Biology and the Diploma in Medical Radiodiagnosis (DMRD), paying my own fees.

Guy’s Radiology Department was interesting. The radiology chief was Dr Tom Hills who smoked cigars, had a tiny lead apron over the appropriate parts and had made an automatic wet X-ray film processing system.

It was obvious I would never get a radiology job at Guy’s coming from Belfast, speaking strangely, and not having the MRCP (Membership of the Royal College Physicians examination) so I applied for a Senior House Officer (SHO) position at the Hammersmith Hospital London where everybody was equal.

At the Hammersmith I was told by the other applicants that I would not get the job as I had come from Belfast. However I was determined to leave the interview with my head held high. I was first in to the SHO interview and was amazed to see a long row of people on the other side of the table headed by Professor Robert Steiner. He opened the questioning by asking why I was a member of the Musician’s Union. I explained that all my colleagues in the White Eagles Jazz Band had failed their exams, left the University and turned professional. To continue to play with them I had to join the Union. Then I was asked what else I had done, so rising to the occasion I told them I had been the ghost in a ghost train in an Amusement Park. I was bored so I connected the light over the skeleton to be permanently on. The little children came out saying that there was a ghost reading the Daily Telegraph beside the skeleton. Of course nobody believed them and the people outside poured in to see what was going on.

I emerged from the interview after forty minutes to tell the other candidates how awful the interview had been. I was appointed to the position! Professor Steiner used me to do all the odd jobs in the X-ray department for the next two years. As the junior doctor I worked in the dark with the oldest Watson X-ray set. Every time I took an erect X-ray the large steel edged cassette containing the film would slide across and usually fall out of the carriage landing on the floor with a loud crash frightening everybody in the darkened room.

It was a time of great innovation at the Hammersmith: the first renal transplant was carried out; micturating cystograms were started. After initial problems with old ladies standing up in the dark being unable to ‘pee’ when the urine hit the steel bucket with a tinkle, the problem was solved by lining the bucket with sound deadening polythene. Friday was ladies’ day when I was the only radiologist who performed Hysterosalpingography. It was done in a small room with a boiling water sterilizer in the corner. When I came out to view the films the steam poured out of the door and I would appear in a cloud of steam as a fearsome figure wearing large dark goggles and a long lead apron to the consternation of the waiting mixture of NHS and private practice ladies.

Professor Steiner was a great leader and inspiration. I will always be grateful to him appointing me to a job in the Hammersmith to start my career in the NHS. https://www.rcr.ac.uk/college/obituaries/professor-robert-steiner


About Ralph McCready

I graduated in Medicine from Queen’s University Belfast and then worked as a Houseman in the Royal Victoria Hospital. When I came to England I studied for the MSc in Radiation Physics and Biology and the Diploma in Radiodiagnosis at Guy’s Hospital London. After working as an SHO in Radiology at the Hammersmith Hospital I was appointed to a research position at the Institute of Cancer Research in Sutton, Surrey. With the development of a Nuclear Medicine Department at the Royal Marsden Hospital I became the consultant in charge for over 40 years. In 1987 I was awarded a DSc by Queen’s University Belfast, the British Institute of Radiology Barclay Prize in 1973, an Hon. FRCR in 1975, an Honorary Fellowship of the Faculty of Radiologists Royal College of Surgeons, Ireland in 1992 and made an Honorary Member of the Japanese Radiological Society also in 1992. I was appointed to a personal chair in Radiological Sciences in the Institute of Cancer Research in 1990.

As a founder member of the British Nuclear Medicine Society I have recently co-edited a book celebrating the 50th Anniversary of the Society and the development of radionuclide studies in the UK.https://link.springer.com/book/10.1007/978-3-319-28624-2

Bringing together Science, Faith and Cancer Care

Slide2

The Revd. Canon Dr. Mike Kirby, Chair of the BIR Oncology and Radiotherapy Special Interest Group, has a wealth of experience as a senior radiotherapy physicist, working on national guidance, developing clinical practice and teaching radiography students. As if this doesn’t keep him busy enough he has also taken on the role of Canon Scientist at Liverpool Cathedral where he is working to encourage dialogue and discussion about science and faith. Here he explains what the role involves.

I began work in the UK’s National Health Service more than 30 years ago, as a Radiotherapy Physicist at the Christie Hospital, Manchester UK.  Alongside my routine clinical work, my main research interest was in electronic portal imaging and portal dosimetry.  I then helped set up Rosemere Cancer Centre in Preston, UK from 1996 as deputy Head of Radiotherapy Physics and Consultant Clinical Scientist there.  During that time I contributed to and edited national guidance documents such as IPEM Reports 92, 93 and 94 and the multidisciplinary work, ‘On-target’.

My work moved back to the Christie in 2007 and as Head of Radiotherapy Physics and Consultant Clinical Scientist for the Satellite Centres, I helped to lead their development in Oldham and Salford as part of the Christie Network. My research and development work has primarily focused on electronic portal imaging, developing clinical practice and equipment development.

Mike Kirby4

More recently my focus has been on teaching and learning for radiotherapy education as a lecturer (Radiotherapy Physics), especially using VERT, for Radiotherapy programmes in the School of Health Sciences, Liverpool University; but always with a focus on the wider picture of radiotherapy development having served on both IPEM and BIR committees throughout my whole professional career.

 

Alongside my scientific work, I am a priest in the Church of England; having trained and studied at Westcott House and the Universities of Cambridge and Cumbria, I hold graduate and postgraduate degrees in Theology.

Mike Kirby

My ministry has mainly been in the Cathedrals of Blackburn, Chester, and Liverpool (Anglican) where I was Cathedral Chaplain.  I have recently (Feb 2020) become a Residentiary Canon of Liverpool Cathedral, with the title of Canon Scientist the primary aim of which is to encourage dialogue and discussion about science and faith.

 I am a member of the Society of Ordained Scientists and have given numerous talks on Science and Faith to schools, colleges, churches and other institutions.  These have included organising lecture series with world renowned speakers at Blackburn (2016) and Chester (2018) cathedrals; a third series was delivered at Liverpool Cathedral in May 2019, and a fourth series is planned for May 2020.

My role is to consider all sciences (physical, clinical, social) in ecumenical and multi-faith environments.  So I will look to work with initiatives already developing in other Christian traditions, other faiths and secular organisations to discuss current challenges, such as climate change, medical ethics, health initiatives and information for cancer, dementia and mental health issues etc..

Mike Kirby2.jpg

My work will be part of the clear faith objectives of the cathedral as a place of encounter for everyone, through events and initiatives within the cathedral, but also beyond.  This will include services focusing on health issues and pastoral challenges (such as bereavement and loss); events engaging with science, its wonders and challenges; fostering further relationships with local and wider communities on science and healthcare education, and with academic and scientific institutions too; encouraging scientific and ethical engagement with schools and colleges, as I have done so previously in both Chester and Blackburn dioceses.

I will be encouraging Christians and Christian leaders to understand science and engage with it more, alongside other national projects such as the recently announced ECLAS (Engaging Christian Leaders in an Age of Science) project of Durham and York universities and the Church of England.  As a self-supporting minister (one whose paid employment is outside of the church), I will also look to encourage and highlight the tireless work of many others who already do this within the diocese and the wider national church.

Within all of this, I have always seen my vocation as being one within God’s service, for all people, with my work for cancer patients being right at the heart of it.

006

If you have any questions for Mike, you can send him an email at sigs@bir.org.uk

Mike is the co-author of the international student textbook on On-treatment Verification Imaging: a Study Guide for IGRT, through CRC press/Taylor and Francis with Kerrie-Anne Calder. They are both contributors to the updated UK national guidance on IGRT due out in 2020.

Mike, with the support of the SIG, has helped to organise a range of events for radiographers, physicists, dosimetrists, radiologists and oncologists. See the full programme here

 

When medical physicists wore white coats

NHS

Dr Edwin Aird shares his memories of the revolution he has experienced working in the medical physics department.

 

Edwin Aird portrait

While I was an undergraduate at Newcastle University (1962), the 2nd year honours group was invited to visit the Medical Physics Department at Newcastle General Hospital. I was so impressed with the department and the range of things they were doing and the application of physics to medicine that I wrote to Professor Frank Farmer (Head of Department at that time) to ask about working there. He responded with a proposal that I apply for a special research grant that he was hoping for locally and that I write again after my graduation.

The following year I got in touch with Frank Farmer again and was accepted on an MSc grant to study “In-homogeneities in Radiotherapy”; one year in the first instance (on a grant of about £700).

Meeting 1970 1

I can’t now remember my first day exactly; not sure what office I had, but I do remember the Professor’s insistence on donning a white coat (provided and laundered by the hospital) when arriving at work, This ‘uniform’ was thought to be a vital sign to patients that physicists were part of the ‘clinical’ team.

I divided my time in that first year between research and clinical work (interestingly, this was part of the philosophy of some of the early physicists, many of whom in the 1930s and 40s had transferred from academic physics, including Frank Farmer); the situation now couldn’t be more different.

Fig 1

Image 1 The gantry mounted linear accelerator at Newcastle General Hospital [ref 2]

So, on the routine side, I began to learn about radiotherapy: its planning and treatment. Newcastle at that time had two cobalt machines (Mobaltron-60s) and two linear accelerators as well as two Marconi 250kV sets and a Philips SXT (Superficial X-rays). This latter set I used extensively a little later in my career to optimise the characteristics of the Farmer chamber (image 1).

The main linear accelerator was manufactured by Mullard (a branch of Philips), which Frank Farmer had installed as the first gantry-mounted 4MV linac (image 2). There were a few stories about the installation of this linac. In particular I remember this: the team had reached the point where they needed to produce X-rays so needed a high atomic number transmission target. Someone found a sovereign, but forgot the amount of heat produced when the high energy electrons hit it. The sovereign promptly melted and fell out of the linac head. (This linac went on to perform 25 years’ service).

Fig 2

Fig 2 Newcastle Simulator (Frank Farmer at Controls) [ref 3]

For those physicists who find quality assurance (QA) on linear accelerators today a huge burden, my recollection of the checks we performed on this linac amounted to: dose measurements and field size checks. There was little attempt to measure flatness since the accelerated electron beam wasn’t bent before striking the target, so no perturbations in intensity across the field were expected.

 

 

Fig 3

Fig 3 A Head and Neck Xeroradiograph showing potential. Treatment volume [ref 3]

 

Treatment planning was done by hand, often mainly using % depth dose, but also with some isodose curves for more complex plans on tracing paper; on to an outline of the patient performed using lead wire and other devices, e.g. callipers. Newcastle was unique in having developed a home-made simulator (using a radiotherapy SXT unit mounted on a gantry (image 2) that allowed an image to be viewed on a Xerox plate immediately without the need for film development (ref 3, see also image 3).

The first computer in the department, which was to revolutionise treatment planning, came to Newcastle in the early 1970s and was called a PDP 8, the ‘Rad8 system’ developed by Bentley and Milan. (image 4 [ref 4]).

Radium tubes and needles were still extensively used at this time for intracavitary and interstitial brachytherapy. I was also required to calculate the dwell times for gynae radium insertions (using ovoids and central vaginal sources with a modified Manchester system for the gynae and radium needles, mainly in back of tongue with radiographs and Paterson Parker tables). Following the calculation of the radium dwell times I would then go up to the ward to discuss the removal times, for each patient, with sister on the ward. Amazing now to think how much radioactivity (up to 105mg – equivalent to approximately 389 MBq-or more) for gynae insertions was handled by several different groups of staff at that time.

In those early years I also learnt the elements of radiation protection and nuclear medicine. Radiation Protection (guided by a ‘Code of Practice’; an excellent document that was used to help write the ‘Guidance Note’ now used under Ionising radiation Legislation) was regionally organised. Very early in my career (there were only two of us to perform the external radiation work: myself and MJ Day), I found myself organising visits within Northumberland, Cumbria and parts of Durham. (See The Regional Centre below). These were more as inspections than to make many measurements (not the very extensive QA that is performed now, although we did use film or image intensification – only recently developed – to look for faults in lead aprons; and we measured exposure levels in and out of beam with the ‘37D’ (Pitman) dosemeter (originally developed by Sidney Osborne as an excellent versatile instrument for exposure measurements ref 5). I learnt a pattern of inspection of barriers, filtration, lead aprons etc. very quickly. [In the early 1970s the NRPB decided to do their own inspections and were surprised to find that, because the HPA had organised things so well there was little need for NRPB to get too heavily involved].

My memories of nuclear medicine: incredibly slow rectilinear scanners, prior to the commercial development of gamma cameras; kidney function (renogram) using two ‘D’-shaped detectors (scintillation) with manual optimisation of their positions connected to count rate meters and chart recorders.

The regional centre

I’m not sure how many hospitals this covered in my early days in Northumberland, Tyneside, Durham and Cumbria. I know when Keith Boddy implemented Frank Farmer’s plan to have a small physics department (where gamma cameras were installed in district general hospitals) there were thirteen hospitals with physics departments in the region. Prior to this – from about my 3rd year at Newcastle – I was delegated to look after the small centre in Carlisle where there were two Marconi 250kV sets, an SXT and some iodine treatment. In the 1950s this had been the job of Jack Fowler who used some of his time to study arc therapy on 250kV (see ref 6).

Rad 2014 photo

Edwin Aird (right) receiving the BIR Sylvanus Thompson Award from Andy Beavis

In those early years I also found time to help develop differential X-ray absorptiometry to measure antimony in the local Tyneside Antimony workers’ lungs (organised by the Newcastle University Department of Industrial Health). I was also able to build on this experience to develop my own equipment, using characteristic X-rays, to measure bone mineral in the femur. This clinical work allowed me to meet a new set of clinicians (other than radiotherapists – as Clinical Oncologists were then called – and radiologists) involved with bone loss in patients: kidney specialists, endocrinologists and geriatricians. Commercial equipment has since been developed to perform bone mineral and body composition measurements (GE Lunar, Hologic, and Norland).


References:

  1. Aird EGA and Farmer FT. The design of a thimble chamber for the Farmer dosemeter. Phys Med Biol 1972 17: 169–174. https://doi.org/10.1088/0031-9155/17/2/001
  2. Day MJ and Farmer FT. The 4 MeV Linear Accelerator at Newcastle upon Tyne. Br J Radiol 1958; 31: 669–682. https://doi.org/10.1259/0007-1285-31-372-669
  3. Farmer FT, Fowler JF and Haggith JW. Megavoltage Treatment Planning and the Use of Xeroradiography. Br J Radiol 1963; 36: 426–435. https://doi.org/10.1259/0007-1285-36-426-426
  4. Bentley RE and Milan J. An interactive digital computer system for radiotherapy treatment planning. Br J Radiol 1971; 44: 826–833. https://doi.org/10.1259/0007-1285-44-527-826
  5. Osborn SB and Borrows RG. An Ionization Chamber for Diagnostic X-Radiation. Med.Biol1958; 3: 37–43. https://doi.org/10.1088/0031-9155/3/1/305
  6. Fowler JF and Farmer FT. Measured Dose Distributions in Arc and Rotation Therapy: A Critical Comparison of Moving and Fixed Field Techniques. Br J Radiol 1957; 30: 653–659. https://doi.org/10.1259/0007-1285-30-360-653

About Dr Edwin Aird

Edwin Aird was Head of Physics at Mount Vernon Hospital from 1988-2012 and Head of Radiotherapy Physics at St Bartholomew’s Hospital from 1985-1988. He was Head of Radiotherapy Physics at Newcastle General Hospital from 1980-1985. He is an IPEM Chief Examiner 1994-1997 (Physics Training Scheme), FRCR (RT) Examiner 1989-1993, Radiotherapy Degree (External Examiner (Liverpool University): 1993-1996. He is a IAEA: Qualified Expert: 1999-2005 and an LH Gray Trustee: 1999-2003.

He was awarded the BIR Roentgen Prize in 2005 and delivered the Silvanus Thompson: Award and Eponymous Lecture 2013.

Having a scan with your head in a rubber hat

NHS

Dr Jim Stevenson, reflects on life as a radiologist in the 1970s.

 

Jim StevensonI started my radiological life in the mid seventies at St George’s Hospital. Part of the rotation programme involved some time at the Atkinson Morley Hospital where I came across the first generation scanner. There was an old dental chair on which a patient laid back with his head in a rubber hat in the scanner porthole. It took 8 slices. Each slice took 5 minutes using an old fashioned tomogram X-ray tube. The image details were processed by a very large computer. The resultant image was printed on a photograph. The image matrix was 80 by 80, an advance since the original 40 by 40. How Jamie Ambrose invented the reports I do not know but his detailed knowledge of brain anatomy was quite outstanding.

Once when walking past the scanner I saw a porter in a brown overall walking round the machine. Being concerned about security, I spoke to Jamie Ambrose. “Don’t worry about him,” he said, ‘”That’s only Godfrey“ (Hounsfield from EMI).

Significant advances in CT occurred about every 5 years. When the first body images appeared we all had to learn cross-sectional anatomy. Since 1945 all anatomy was taught in longitudinal section – sagittal and coronal. I showed an image to my father-in-law. He had no problem with it but he had qualified in 1940. Before the war, all medics had to learn cross-section anatomy! The very best cross-section anatomy book I found was Eycleshymer and Schoemaker published in America in 1911. Still much better than the modern ones of recent times. The only difficulty is that all the labels are in Latin which can make interpretation difficult!

Over the past fifty years medical technology advances have been and will continue to be outstanding. The need to make proper use of them hasn’t changed. Wet films, fluorescent imaging, U/S, MRI and digital are all contributing to our future.


About Dr Jim Stevenson

Dr James Duncan Stevenson BSc. MB.BS, FRCR trained at St.Thomas’ Hospital Medical School, London and four years later turned to radiology at St.George’s Hospital, London. In November 1980 he became a Consultant Radiologist at Royal Victoria Hospital, Bournemouth and Poole Hospital. He retired in August 2007.