“The Radiology Reset Button – overcoming the normalcy bias”

Fodi KyriakosFodi Kyriakos explores how the COVID-19 pandemic could be the catalyst for change in radiology and encourages our community to grasp the opportunity to “seize the moment”  and plan for recovery.

At the beginning of 2020, if someone had told radiology leaders that all NHS outstanding reporting backlogs would be reduced to virtually zero by May, I’m sure they would have looked at you in disbelief and asked what sorcery had been involved, but this situation is exactly where we find ourselves today.

 

Normalcy Bias – Noun [edit]

normalcy bias (plural normalcy biases)

The phenomenon of disbelieving one’s situation when faced with grave and imminent danger and/or catastrophe. As in over focusing on the actual phenomenon instead of taking evasive action, a state of paralysis.

Historical challenges

In the past, it has often taken lots of effort to either invoke or accept change of any kind in radiology and for those managing services, there’s also been a certain amount of risk associated with putting your head above the parapet or being a trailblazer. It has been sometimes easier to follow the well-trodden path rather than to create a new one. Workloads and budgetary constraints have also been a disabler, restricting decision making to the ‘here and now’. This has resulted in failing, or in most cases, not being able to foresee or plan for events that have never happened before, such as an event like a pandemic crisis. Psychology refers to this state of being as normalcy bias. For those who are not familiar with the term, you will certainly be aware of its connotations and radiology now finds itself at this cross-roads.

Ever since the introduction of digital radiography and PACS, NHS radiology reporting backlogs have been a contentious issue among experts, and a recurring feature in the mainstream media! Often being highlighted (and with some justification) in relation to areas such as missed cancer diagnosis, where even the slightest of delays can have a significant bearing on the overall outcome.

Serious backlogs

The extent to which backlogs were a serious issue in the UK was further exacerbated by various Care Quality Commission (CQC)  inspections, which raised concerns regarding reporting backlogs that resulted in delayed or missed diagnosis of conditions that may have otherwise been picked up.

By the end of February 2020, the situation of backlogs was as much an issue as at any time before. Insufficient reporting capacity had led to a build-up of outstanding reports, which in turn meant that outsourcing was at its highest ever levels and growing pressures to meet new deadlines, such as the cancer pathway targets, were increasingly exposing the lack of options available to resolve the problem.

So, you would have been excused if you thought that a crisis such as the COVID-19 pandemic would simply exacerbate the reporting challenges facing radiology. However, this has not been the case. Instead, we have witnessed radiology’s own “clear the decks” exercise, where in fact the complete opposite situation has occurred, resulting in backlogs across the UK being virtually eliminated. Who would have thought that the worst crisis to hit the country (and the world) in 75 years would be a catalyst for NHS radiology departments to press the reset button?

Reset image

Of course, we recognise the superficial nature of this situation. During the pandemic, practically all routine referral activity came to a grinding halt, which allowed radiology to concentrate on COVID-19 and Emergency Department (ED) patients. Chest X-rays and CTs were identified as two of the key diagnostic tools for the virus, but the volumes were manageable. Accident and Emergency footfall was reduced to almost 50% of its usual figures, so reporters were practically able to deliver a ‘Hot-Reporting’ examination for every patient requiring imaging. Something which ED and Intensive care unit (ICU) consultants have grown quickly accustomed to.

During this time, radiology was also still required to work to critical staffing levels, so radiographers and radiologists were covering 24/7 rotas, but due to the lack of activity outside of portable X-ray scanning in ICU, many staff were not being utilised. So, while this enabled the catch up in radiology reporting to take place, what we witnessed was the ‘ying and yang’ of radiology. On the one hand, integral to the continuity of a patient’s pathway and critical to defining an outcome – AND on the other hand, completely dependent on throughput from referrers to maintain activity levels.

Seizing the moment!

So what happens next? Well, in a world where we can guarantee almost nothing, in this situation, we can guarantee that radiology will remain the centre point for the recovery phase of the pandemic, but with the added challenge of complying to ‘social distancing’ and ‘equipment cleaning’ guidelines, how do we manage the continuation of treating COVID-19 patients, while reintroducing ‘business as usual’ and ‘deferred’ patients whose treatment has been delayed?

The “Reset Button” has enabled something else to happen. For the first time, there is now some headspace to plan for the recovery phase and for the next phase at least, there is now funding available to support the recovery. So how do we avoid going back to where we were before the pandemic? How do we seize the moment?

Time to make the changes!

Albert Einstein once famously said: “We can’t solve problems by using the same kind of thinking we used when we created them.” This quote has never been more poignant in the present day and while the pressure to manage change will be at its highest, this is the right time to make these changes happen! With the benefit of ‘The Reset Button’, if we can learn from the past and apply new ways of working moving forward, we can avoid falling into the trap of the normalcy bias and witness the radiology reset button offering a new, efficient and more streamlined radiology department moving forward.

Everything you wanted to know about radiology but were afraid to ask…

On Wednesday 17 June, a live event organised by InHealth, in partnership with The British Institute of Radiology and the Society of Radiographers is taking place, titled: “The Radiology reset button has been pressed”. The aim is to tackle these challenges and support radiology managers as they enter the recovery phase. It will bring together senior figures from radiology and within healthcare to offer insights, opinions and advice on how we can approach this coming period and use what positives we have experienced during the pandemic to create service improvements throughout radiology.

There will be opportunities for radiology managers, clinical leads, radiographers and radiologists to put their questions to the speakers in the panel discussions after their presentations.

REGISTER FOR THE RADIOLOGY RESET BUTTON HAS BEEN PRESSED HERE

(The event is free for all)
About Fodi Kyriakos

Mr Fodi Kyriakos is a former director of RIG Healthcare and founder of RIG Reporting,
the UK’s first provider of external radiographer reporting services. In 2016 he joined The InHealth Group following its acquisition of RIG Reporting and is now the Head of Reporting across the Group. His service specialises in delivering plain film reporting solutions and is the only provider to offer both on-site and telereporting services.
Fodi has over 22 years experience in workforce and staffing solutions and 17 years working exclusive within Imaging and Oncology. He is a member of the Institute of Healthcare Managers and a regular contributor of professional development events across radiology.

 

The flu epidemic of yesteryear: the role of radiology in 1918–20

adrian thomas

Dr Adrian Thomas

100 years ago the UK was facing a fast-moving outbreak of epidemic influenza pneumonia, known as the “Spanish Flu”.

Radiology played an important part in diagnosis, although the crisis was without the scientific knowledge, strategic management and communications we have today. Here, Dr Adrian Thomas explores the six patterns of infection in this unpredictable and powerful disease.

 

 

Radiology is playing a central role in the diagnosis of COVID-19 today, and 100 years ago was also playing an important role in the diagnosis and characterisation of the outbreak of epidemic influenza pneumonia of 1918–1920. A combination of fluoroscopy and radiography was then used, with the occasional utilisation of stereoscopy. The greatest pointer to a diagnosis of epidemic influenza pneumonia in a given patient was the presence of the epidemic, although there were some specific features to indicate the diagnosis. The etiological cause of influenza was not known at the time, being first discovered in pigs by Richard Shope in 1931.

Spanish flu

The epidemic of 1918 far exceeded previous ones in its intensity. It had a high mortality in young adults with the very young and very old being comparatively immune. The associated pneumonia was particularly virulent. In the case of the troopship The Olympic (sister ship of The Titanic) there were 5,951 soldiers on board. Initially there were 571 cases of acute respiratory disease, but within 3 weeks there were 1,668 cases. Of these, 32% had pneumonia, of which 59% died. In any locality the duration of the epidemic was from between 6–8 weeks, and approximately 40% of the population was affected (Osler, 1930).

Six patterns of infection were identified, with correlation of clinical, radiological and post-mortem findings (Sante, 1930., Shanks, et al. 1938). Dr Leroy Sante, the pioneer radiologist from St Louis, described epidemic influenza pneumonia as “the most lawless of the chest infections.” Abscess formation was seen frequently, and was commonly of the small and multiple type. Radiological changes were seen developing day by day, and clinical resolution needed at least six–eight weeks since there had commonly been lung destruction and healing by fibrosis needed to occur.

The patterns were:

Type 1: Peribronchial invasion with infiltrates that enlarge and become confluent forming small areas of consolidation (figures 1 & 2, below). This was not confined to one lobe, but could appear in all lobes as a true bronchopneumonia. This was similar in appearance to ordinary bronchopneumonia.

1Type 1, Influenza bronchopneumonia

Figure 1

2Type 1, Influenza bronchopneumonia_Viewed as from behind

Figure 2

Type 2: Peribronchial invasion with infiltrates that enlarge and become confluent to form solidification of an entire lobe (figure 3, below). The changes remained confined to a single lobe. It was viewed as a true bronchopneumonia but with a lobar distribution (“pseudolobar pneumonia”). Different lobes may be invaded one after another. The pseudolobar pattern was the commonest type, and could resolve without further spread. The presence of previous isolated infiltrates would distinguish this type from common lobar pneumonia. There was a tendency to break down with extensive cavitation.

3Type 2, or pseudo-lobular

Figure 3

Type 3: This starts as blotchy infiltrates that coalesced to form a general haziness over a part of a lung, suggesting a haematogenous origin (figures 4 and 5, below). At post-mortem this was found to be an atypical lobular pneumonia, a “diffuse pneumonitis”, that was so commonly seen during the influenza outbreak. It resembled the streptococcal (septic) pneumonia that was often seen in association with septicaemia when there was no epidemic. The spread was rapid, and the prognosis was poor. Death commonly occurred within the week.

4Type 3, resembling streptococcal (septic) pneumonia

Figure 4

5Type 3, resembling streptococcal (septic) pneumonia

Figure 5

Type 4: A type starting in the hilum and spreading rapidly into the periphery, the so-called “critical pneumonia” (figure 6, below). This was attended with a high mortality. Post-mortem showed a purulent and haemorrhagic infiltration around the larger bronchi. There was often marked cyanosis.

6Type 4, the so-called “critical pneumonia

Figure 6

Type 5: This started in the dependent part of the lungs, with continuous upwards spread (figures 7a and b, below). This was an atypical lobular pneumonia, there was no associated pleural fluid, and it was usually fatal. Initial infection in the costo-phrenic angle spread within 24 hours to involve the lower lung, and death occurred within 48 hours. Clinical features included extreme prostration, high temperature, and delirium. This pattern with rapidly advancing consolidation was seldom seen in other conditions.

7a Type 5. This started in the dependent part of the lungs

Figure 7a

7b Type 5. A film taken 12 hours after 7a

Figure 7b

Type 6. A true lobar pneumonia was only seen rarely.
The prognosis of epidemic influenza pneumonia was difficult to determine. So, as an example, a patient who was resolving would suddenly have changes extend into the other lung and then die. Another patient with successive involvement of all lobes could recover completely. A patient with only minor lung involvement might die, and another with extensive consolidation would recover completely.

Radiologists continue to be in the front line in the treatment of infectious diseases, and although our modalities are now more advanced than a century ago, their contributions remain essential. It is also noteworthy that the simple CXR also remains central.

Figures:

1. Type 1, Influenza bronchopneumonia. Image seen as a positive.

2. Type 1, Influenza bronchopneumonia. Peribronchial clusters of infiltration, with no relation to lobar architecture. Viewed as from behind.

3. Type 2, or pseudo-lobular.

4. Type 3, resembling streptococcal (septic) pneumonia. Image seen as a positive.

5. Type 3, resembling streptococcal (septic) pneumonia. Blotchy ill-defined infiltrates which coalesce to form a general haziness. Viewed as from behind.

6. Type 4, the so-called “critical pneumonia.”

7a. Type 5. This started in the dependent part of the lungs, and this early film shows consolidation in the costophrenic angle (black arrow).

7b. Type 5. A film taken 12 hours after 7a. The lower right lung is consolidated, and the patient died 12 hours later. Post mortem showed a solid lung with no effusion.
Readings:

Osler, William. (1930) The Principles and Practice of Medicine. 11th Edition, Thomas McCrae (Ed.). London: D Appleton.

Sante, Leroy. (1930) The Chest, Roentgenologically Considered. New York: Paul B Hoeber.

Shanks, S Cochrane., Kerley, Peter., Twining, Edward W. (Eds). (1938) A Textbook of X-ray Diagnosis by British Authors. London: H. K. Lewis.

 

Dr Adrian Thomas FRCP FRCR FBIR, BIR Honorary Historian

About Dr Adrian Thomas

Dr Adrian Thomas is a semi-retired radiologist and a visiting professor at Canterbury Christ Church University. He has been President of the Radiology Section of the Royal Society of Medicine, and of the British Society for the History of Medicine. He is the Honorary Historian to the British Institute of Radiology. He has had a long-term interest in role development in radiography, and teaches postgraduate radiographers.

Adrian has written extensively on the history of radiology writing many papers, books and articles. He has, with a colleague, written a biography of the first female radiologist and female hospital physicist: Adrian Thomas and Francis Duck: Edith and Florence Stoney, Sisters in Radiology (Springer Biographies) Springer; 1st ed. 2019 edition (1 July 2019).

© Thomas / 2020

Help! I’m (not) a leader, get me out of here!

Elizabeth Loney

Do you ever wonder how you got where you are? Are you sure you see yourself as others do? 

Dr Elizabeth Loney, Consultant Radiologist and Associate Medical Director,  reflects on imposter syndrome and offers tips on how to manage it.

 

How many times have you sat in a meeting and looked around the room thinking, “what on earth am I doing here? Everyone else knows way more about this than I do, and they know it!”

The first senior management meeting that I attended started with reviewing the minutes of the last. As I read through the document, I realised I had no idea what much of it said—death by TLAs (three letter acronyms!). I nudged the person next to me and said, “what does … stand for?” They shrugged their shoulders and whispered to the person on their other side “what does … mean?” It took five people down the line before someone knew what it was! I found that reassuring, but also slightly scary. The fact that other people were in the same boat made me feel less like an idiot, but at the same time, how could such a senior group not understand the jargon and why had they said nothing? So… lesson one: be curious and not afraid to ask questions. You’re probably just asking what most people are thinking anyway!

About six months ago I started the Nye Bevan Programme with the NHS Leadership Academy. If I pass, I will allegedly have proven myself ready for an NHS executive leadership role. There are around 48 others in my cohort, all senior leaders in different areas of the NHS. What the heck am I doing there?! I’m just a doctor, not a leader. I might sort things out for people as Clinical or Divisional Director but I’ve never felt more like a “public servant” than when in a “leadership role”. I had serious Imposter Syndrome. The first residential was entitled “Knowing Yourself and Others” and was all about the impact you have on others as a leader and why you act as you do—unconscious bias and all. It was a traumatic experience for me. I did so much “reflecting” I felt like a mirror! I couldn’t do it—just give me a few scans to report! I’m not a leader—get me out of here. However, I got chatting to others that week and realised that pretty much everyone else in the room felt the same. Most people suffer with this issue at some time—and if you don’t, why not? A little humility is a wonderful thing.

Are you affected by low self-confidence? At times like this, seeking peer feedback can be helpful. As part of the course I had to send out a questionnaire asking others I had led on a work programme for anonymous feedback. That was scary! I asked questions including “what do I do well?” and “what could I do better?” I half expected to be slated but, to my surprise, the feedback was really positive. My view of myself was distorted. I may not see myself as a leader but apparently others do! So… lesson two: when you feel like an imposter remember that many others in the room feel the same way. There must be a reason why you are there. What do others see in you, that you do not? What is your role in the group? ‘If not you… who?’

So ends my first blog as Chair of the BIR Leadership and Management SIG… another position I find myself in wondering how I got here! What do I know about leadership? I’m not an expert. However, I do have a passion for self-improvement and a curious nature. Why not join me on my journey to “managerial enlightenment”? We have such a lot to learn from one another.

I hope to meet you in person at the BIR Annual Congress where we will gain inspiration from excellent speakers covering topics on “practical” and “personal” management, including an interactive session by Philips based on their “Insights” programme—expect to be up on your feet! We are also holding our first annual event on leadership, “Leadership 2020” on 31 January 2020. Come along and join us for more opportunities to learn, network and ask questions.

See you there!

Dr Elizabeth Loney,

Chair of the BIR Leadership and Management Special Interest Group

BIR LEADERSHIP 2020 event 31 January 2020

More about the BIR leadership and management SIG here 

Join the open SIG here  (BIR member only)

About Dr Elizabeth Loney

Dr Elizabeth Loney is Chair of the BIR Leadership and Management Special Interest Group (SIG). She is a Consultant Radiologist and Associate Medical Director and Consultant Radiologist at Calderdale and Huddersfield NHS Foundation Trust.

 

Getting the taste for radiology

Deepsha Agrawal 3

 

Dr Deepsha Agrawal reflects on how a taster week at her local hospital was the first step on her journey to qualifying as a radiologist.

 

 

Having read several narratives of Röntgen’s glowing cardboard screen and the mysterious Crooke’s tube, I have always found myself fascinated by radiology. I often wondered what radiologists do in their secretly tucked away dark rooms and how those digital blueprints and monochrome scans make sense. The evolution of radiology from giant X-ray tubes to present day dynamic scans and angio seals, prompted me to consider a career in radiology. And so valuable was my taster week experience that my interest has now transformed into a drive to become a radiologist.

I am an international medical graduate doing my Foundation Year 2 Clinical Fellowship. Although I had done a two week elective in radiology during my internship (the Indian equivalent of FY1), I was keen on doing a taster week before entering specialty training in the UK.

How I arranged it:

A taster week can be a great opportunity to give a useful insight into a specialty and connect to trainees and consultants who are currently working in the specialty. I arranged my taster week by emailing a radiology consultant in my hospital who kindly accepted and set things up for me promptly.

After a quick discussion with the radiology consultant, I emailed my rota manager who was very generous to grant me study leave for a week.

My experience:

Deepsha Agrawal 1My week was spread between plain film, ultrasound, CT, MRI and some interventional radiology sessions. While the plain film sessions were useful to carry into my regular job, the IR experience in the theatre was quite thrilling. Interventional radiologists are clinicians with those magic wands (catheters) who practice some seemingly futuristic medicine. It was an absolutely inspiring experience for me.

Spending a week in radiology gave me a lot of clarity on my doubts and misconceptions about the specialty.

Artificial intelligence (AI) won’t replace radiologists: Every time I had expressed my interest in radiology, I was told that it will soon be replaced by AI and radiologists will be left with no jobs. My experience tells me that AI will only alter the job of a radiologist and not replace it. Radiologists do more than reading and interpreting images. They recreate the patient’s clinical story when they look at a scan. AI can recognize but never interpret an image.

Radiology is a core clinical specialty: I was under the impression that radiology is mainly technical and has only a slight clinical edge to it. During one of my initial sessions  I mentioned the same to a radiology consultant and amusingly but legitimately he got quite upset and told me there’s a reason it’s called “Clinical Radiology”. A week into radiology, I realised that there is in-depth clinical processing in radiology with every scan.

Radiologists touch the lives of their patients every day: It might be true that radiologists see fewer patients than an average clinician but with every scan interpretation a radiologist is affecting the life of a patient. They add value by not only interpreting the scans but also consulting with other physicians on diagnosis and treatment, treating diseases with intervention and relating findings clinically and from lab tests.

More recognition within the healthcare system: I was fortunate to attend a surgical and respiratory Multi-disciplinary Team Meeting (MDT) during the week. These meetings gave me insight into the role of a present day radiologist. The traditional view of the radiologist as a physician who sits in the dark room defining technical parameters of imaging procedures and interpreting diagnostic images is now outdated. Radiologists have now come to the forefront with multi-disciplinary meetings where they are valued and recognized for their opinion in deciding the course of treatment for patients.

Deepsha Agrawal 2Radiologists are happy people: Having rotated through various departments during my internship and experiencing a few departments in the NHS, I found a striking difference in how radiologists see their work. They work as a team, care for each other and are very encouraging. Don’t be surprised if your fellow consultant is making you a cup of coffee! Also, the trainees fairly support medical students and junior doctors in walking the path to enter specialty training. Overall, I felt that the happiness index of radiologists was higher than other specialists and they truly enjoy their work.

Although I entered as a slightly confused junior doctor, I have come out more aware and orientated to work towards a career in radiology with audits, academic projects and day-to-day learning ideas. In summary, I thoroughly enjoyed my taster week and am pleased with my experience. For a radiologist, no two days are the same. There is immense learning and fun in radiology. I am already dreaming of holding the needles and being on the dictaphone. I highly recommend a taster week to all junior doctors considering a career in this specialty.

I would like to add a special note of thanks to Dr. Amit Patel, Consultant Radiologist, Queen Elizabeth University Hospitals, Glasgow, who kindly accepted me as a taster week student and scheduled my sessions.

– Deepsha Agrawal, FY2 Clinical Fellow, Neurosurgery, Queen Elizabeth University Hospitals, Glasgow.


About Deepsha

I am an FY2 Clinical Fellow in Queen Elizabeth University Hospital in Glasgow. After graduating from India in 2018, I moved to the UK for further training with a keen interest in Radiology. My journey has been great so far and I look forward to bringing innovations to medicine as a radiologist.

Radiotherapy: 40 years from tracing paper to tomotherapy

NHS

Physicist Andy Moloney and Clinical Oncologist David Morgan reflect on how radiotherapy developed since their early careers

 

We first met in the autumn of 1981, when the NHS was, at 33 years from its inception, but a youngster. Andy had recently joined the Radiotherapy Physics staff at Nottingham General Hospital after graduating in Physics from the University of Nottingham, and David was returning to the clinical Department of Radiotherapy and Oncology after a year’s Fellowship at the Institut Gustave-Roussy in France. A firm friendship rapidly developed, one that continues to this day.

On reflection, joining the radiotherapy fraternity at that time was a leap of faith. The perceived wisdom amongst many of our scientific and clinical colleagues at the time was that this treatment technique was outdated and overshadowed by radical surgical procedures, new chemotherapy agents and biological modifiers poised to reduce radiotherapy to the history books.

picture 063This was a time when, in this Cinderella of specialties, physics planning was achieved by the superposition of two dimensional radiation plots (isodoses) ,using tracing paper and pencils, to produce summated maps of the distribution. The crude patient outlines were derived from laborious isocentric distance measurements augmented by the essential “flexicurve”. The whole planning process was slow and labour intensive fraught with errors and ridiculed by colleagues in the perceived prestigious scientific and clinical disciplines. The principal platform for external beam radiotherapy delivery, the Linear Accelerator (LinAc), had also reached something of a plateau of development, albeit with improved reliability, but few fundamental changes. Caesium tubes were transported from the “radium safe”, locked in an underground vault, to the operating theatre in a lead-lined trolley, where they were only loaded into “central tubes” and “ovoids” after the examination under anaesthetic (which was performed with the patient in the knee-chest position); they were then manually placed into the patient, who went to be nursed on an open ward, albeit behind strategically placed lead barriers.

For no sites outside the cranium was Computer Tomography (CT) scanning available. Magnetic Resonance Imaging (MRI) was still a vision seen only by a small number of enthusiasts.

All these limitations were met by a developing team of scientific and clinical enthusiasts believing in the future of radiotherapy if only technology could deliver solutions to address an improving understanding of the differing cancers and their radiobiology.

picture 066In the latter half of the eighties these solutions began to crystallise. Computers were being introduced across the NHS and their impact was not lost in radiotherapy. Pads of tracing paper were replaced with the first generation of planning computers. The simple “Bentley-Milan” algorithms could account for patient outlines accurately and speedily and optimising different beam configurations became practical. Consideration of Organs at Risk, as defined by the various International Commission on Radiation Units (ICRU) publications, became increasingly relevant. Recognition of the importance of delineating the target volumes and protecting normal tissue required improved imaging and this was provided by the new generation of CT scanners. In the nineties these were shared facilities with diagnostic radiology departments. However, the improvements provided by this imaging, enabling accurate 3-dimensional mapping of the disease with adjacent normal tissues and organs at risk, dictated their inclusion into every radiotherapy department soon after the millennium. The added bonus of using the grey scale pixel information, or Hounsfield numbers, to calculate accurate radiation transport distributions soon followed when the mathematical and computer technology caught up with the task. The value of MR and Positron Emission Tomography (PET) imaging was also recognised in the diagnosis, staging and planning of radiotherapy and the new century saw all of these new technologies embedded within the department.

Mould room technology was also improving with “instant” thermoplastic immobilisation shells replacing the uncomfortable plaster and vacuum forming methods. Custom shielding with low melting high density alloys was becoming routine and it was not long before these techniques were married with the emerging CT planning to provide “conformal” treatments.

picture 067LinAc technology also received added impetus. Computers were firstly coupled as a front end to conventional LinAcs as a safety interface to reduce the potential for “pilot error”. Their values were soon recognised by the manufacturers and were increasingly integrated into the machine, monitoring performance digitally and driving the new developments of Multi Leaf Collimators (MLC) and On Board Imaging (OBI).

The dominos for the radiotherapy renaissance were stacked up, but it needed the radiographers, clinicians and scientists to decide on the direction of travel. Computer power coupled with advanced electro-mechanical design had transformed MLC efficiency and resolution. Conventional conformal planning was now progressively superseded by sophisticated planning algorithms using merged CT and MR images. Intensity Modulated RadioTherapy (IMRT) had arrived in its evolving guises of multiple fixed field, dynamic arc therapy (RapidArc) or Tomotherapy. Whichever technique, they all offered the radiotherapy “Holy Grail” of providing three dimensional homogeneous dose distributions conformed to the Planning Target Volume (PTV) whilst achieving the required dose constraints for organs at risk and normal tissue preservation.

The tools had arrived, but an infrastructure to introduce these “toys” safely into a complex clinical background had also developed alongside. Quality standards (ISO9000), Clinical Trials, Multi Disciplinary Teams and Peer Review were governance mandates for all oncology departments and radiotherapy was leading the way. In forty years, radiotherapy had lost the “Cinderella” image and had been invited back to the clinical ball. Noticeably, breast and prostate adenocarcinoma constituted half of the radical workload.

The question remains of how and why did this transformation occur? Obviously the developing computer power and technology were the pre-requisites for many of the developments, but a key catalyst was the foresight of all of the radiotherapy family from which enduring friendships have been forged. The working lives of the clinicians and physicists involved in radiotherapy planning have probably changed more dramatically than those of any other medical and paramedical groups over the last 35 years.

We may have retired, but we still cogitate about the future direction and science behind this developing and essential cancer treatment and look forward to our younger colleagues enjoying their careers as much as we enjoyed ours.

 


About David Morgan

david morganDr David A L Morgan began training in Radiotherapy & Oncology as a Registrar in 1977, and in 1982 was appointed a Consultant in the specialty in Nottingham, continuing to work there until his retirement in 2011. He joined the BIR in 1980 and at times served as Chair of its Oncology Committee and a Member of Council. He was elected Fellow of the BIR in 2007. He is author or co-author of over 100 peer-reviewed papers on various aspects of Oncology and Radiobiology.

 

About Andrew Moloney

andy moloneyAndy Moloney completed his degree in Physics at Nottingham University in 1980 before joining the Medical Physics department at the Queens Medical Centre in the same city. After one year’s basic training in evoked potentials and nuclear medicine, he moved to the General Hospital in Nottingham to pursue a career in Radiotherapy Physics and achieved qualification in 1985. Subsequently, Andy moved to the new radiotherapy department at the City Hospital, Nottingham, where he progressed up the career ladder until his promotion as the new head of Radiotherapy Physics at the North Staffordshire Royal Infirmary in Stoke-on-Trent. Over the next twenty years Andy has acted as Clinical Director for the oncology department and served on the Radiation Physics and Oncology Committees at the BIR and was appointed a Fellow in 2007. He has been the author and co-author of multiple peer reviewed articles over the years prior to his retirement in 2017.

 

Having a scan with your head in a rubber hat

NHS

Dr Jim Stevenson, reflects on life as a radiologist in the 1970s.

 

Jim StevensonI started my radiological life in the mid seventies at St George’s Hospital. Part of the rotation programme involved some time at the Atkinson Morley Hospital where I came across the first generation scanner. There was an old dental chair on which a patient laid back with his head in a rubber hat in the scanner porthole. It took 8 slices. Each slice took 5 minutes using an old fashioned tomogram X-ray tube. The image details were processed by a very large computer. The resultant image was printed on a photograph. The image matrix was 80 by 80, an advance since the original 40 by 40. How Jamie Ambrose invented the reports I do not know but his detailed knowledge of brain anatomy was quite outstanding.

Once when walking past the scanner I saw a porter in a brown overall walking round the machine. Being concerned about security, I spoke to Jamie Ambrose. “Don’t worry about him,” he said, ‘”That’s only Godfrey“ (Hounsfield from EMI).

Significant advances in CT occurred about every 5 years. When the first body images appeared we all had to learn cross-sectional anatomy. Since 1945 all anatomy was taught in longitudinal section – sagittal and coronal. I showed an image to my father-in-law. He had no problem with it but he had qualified in 1940. Before the war, all medics had to learn cross-section anatomy! The very best cross-section anatomy book I found was Eycleshymer and Schoemaker published in America in 1911. Still much better than the modern ones of recent times. The only difficulty is that all the labels are in Latin which can make interpretation difficult!

Over the past fifty years medical technology advances have been and will continue to be outstanding. The need to make proper use of them hasn’t changed. Wet films, fluorescent imaging, U/S, MRI and digital are all contributing to our future.


About Dr Jim Stevenson

Dr James Duncan Stevenson BSc. MB.BS, FRCR trained at St.Thomas’ Hospital Medical School, London and four years later turned to radiology at St.George’s Hospital, London. In November 1980 he became a Consultant Radiologist at Royal Victoria Hospital, Bournemouth and Poole Hospital. He retired in August 2007.

A pregnant goat in the machine: memories of working in radiology

NHS

From dark art to a pregnant goat in the machine, Dr Richard Keal reflects on his NHS career in radiology. 

 

RKeal

When I started training in medicine in 1971, radiology was literally a dark art. The Middlesex Hospital X-ray department was in the basement of the hospital, a gloomy place populated by pale individuals, some wearing red goggles, who were rarely seen outside and certainly never communicated with medical students. We heard rumours of strange investigations performed there, such as air-encephalograms, which sounded more like medieval torture than anything diagnostic. Radiology had very little impact on my life as a medical student apart from my elective in Hamilton, Ontario in 1975. Here I heard a lecture by an eminent neuro-radiologist from England lamenting that he had had to come to Canada to see images from the new “EMI Scanner” – the start of the revolution in imaging.

After qualifying, I tried several specialities before ending up as a cardiology registrar. Here I was responsible for all the emergency pacing and assisting at cardiac catheterisations. I had no radiation protection training other than being told that we had to wear lead coats and radiation monitoring badges. The portable image intensifier kept cutting out and it was only when I was training in radiology that I learnt that this was due to the permitted time limit being exceeded. I often wonder whether this was the reason I developed cataracts later on.

A further career change found me training in radiology in Aberdeen. This was an exciting time: Aberdeen had two CT scanners, new real time ultrasound machines and a completely new department no longer hidden in the basement. However the real star was the NMR (as it was called then) scanner. When I arrived to train in 1983, The Mark 1 (the world’s first whole-body MRI scanner) had been relegated to research use and was available for the radiology trainees to use. I had my head scanned on it. The 64 x 64 pixel image at least proved I had a brain! I was unfortunate to have been scanned just after a pregnant goat had been in it and the smell was indescribable. We were the first trainees in the world to be taught and examined on MRI imaging for our part 1 exam. Looking at the scanner, now in the museum in Aberdeen, it is impossible to believe that a machine built of copper plumbing components with a chicken wire and aluminium foil Faraday cage and a ZX81 processor could have ever produced images.

Coming to Leicester in 1986 was like a step back in time! No MRI, a B-mode ultrasound system and a CT scanner that no registrars were allowed access to. It was here that I did my first (and last) trans-lumber aortagram and saw other investigations such as cervical myleograms. I had learnt to do lymphangiograms in Aberdeen and I used to spend many a quiet morning performing them.

With my interest in cardiac imaging, I was appointed as a consultant cardiac radiologist at the cardio-thoracic centre. I was one of the few radiologists in the country with an interest in echocardiography and in close cooperation with the cardiac surgeons, introduced intra-operative trans-oesophageal echocardiography into the operating theatres, a technique now commonplace and performed usually by anaesthetists today. As a radiologist, the hospital management were used to me asking for expensive pieces of equipment and when it came to replacing our echocardiography systems, they didn’t ask any questions when I told them that digital imaging was now standard, replacing VHS tapes, and that we required a digital archive. The result was the largest digital echocardiography department in Europe complete with a 400 GB optical jukebox the size of a small room. I followed this up by persuading them to install the first dedicated cardiac MRI scanner in the country.

I started my career by learning invasive cardiac catheterisation and ended it by performing CT coronary angiograms, such has been the pace of change in the last 40 years. Unfortunately, imaging appears to have superseded history and the workload is now excessive. The hospital I worked in now has three MRI scanners (two cardiac), two CT scanners, numerous echocardiography systems, two SPECT systems and a PET scanner; all imaging techniques that didn’t exist or were in their infancy when I started in medicine. What does the future hold?


About Dr Richard Keal

1973

I was born in 1953 and educated at Alleyn’s School in Dulwich. I scraped into the Middlesex Hospital Medical School in 1971 with three Cs at A-level having never studied any biology. After an uneventful medical school career, apart from failing pharmacology twice, I qualified in 1976. I immediately married the lovely nurse I had met over the tea urn on the first ward I was on as a medical student. Uncertain as to what area to specialise in, I tried several specialities as a junior doctor including A & E, cardio-thoracic surgery, thoracic medicine and cardiology. I finally settled on radiology and was offered a registrar post in Aberdeen in 1983 after being sent to see a psychiatrist to ensure I was sane. I moved to Leicester in 1986 as a senior registrar and was appointed as a Consultant Cardiac Radiologist at Groby Road Hospital on 1April 1990. In 1995, I became Head of Department at Glenfield Hospital and continued in post until deposed by the merger of the three Leicester Hospitals in 2002. I spent the next years as the grumpy old man of the department gradually withdrawing from various modalities as new consultants were appointed. I retired in 2013, but continued part-time as clinical head of cardiac nuclear medicine and ARSAC license holder. I finally retired in 2017 when the MDU fees became greater than my private practice earnings. Our three sons are pursuing highly successful careers outside medicine.

My first radiology job in the NHS

NHS

What does a jazz band, a ghost train and a figure in dark goggles have in common? They are all part of the NHS 70 memories of Professor Ralph McCready.

Ralph McCready

As a houseman I had the privilege of working for Professor Frank Pantridge, inventor of the defibrillator. I was fascinated by his catheter lab with the combination of physiology and radiology. So I decided to become a radiologist but was advised to go to England (from Northern Ireland) and obtain an impressive degree so that I could return if I wished. So I went to Guy’s Hospital, London to study for an MSc in Radiation Physics and Biology and the Diploma in Medical Radiodiagnosis (DMRD), paying my own fees.

Guy’s Radiology Department was interesting. The radiology chief was Dr Tom Hills who smoked cigars, had a tiny lead apron over the appropriate parts and had made an automatic wet X-ray film processing system.

It was obvious I would never get a radiology job at Guy’s coming from Belfast, speaking strangely, and not having the MRCP (Membership of the Royal College Physicians examination) so I applied for a Senior House Officer (SHO) position at the Hammersmith Hospital London where everybody was equal.

At the Hammersmith I was told by the other applicants that I would not get the job as I had come from Belfast. However I was determined to leave the interview with my head held high. I was first in to the SHO interview and was amazed to see a long row of people on the other side of the table headed by Professor Robert Steiner. He opened the questioning by asking why I was a member of the Musician’s Union. I explained that all my colleagues in the White Eagles Jazz Band had failed their exams, left the University and turned professional. To continue to play with them I had to join the Union. Then I was asked what else I had done, so rising to the occasion I told them I had been the ghost in a ghost train in an Amusement Park. I was bored so I connected the light over the skeleton to be permanently on. The little children came out saying that there was a ghost reading the Daily Telegraph beside the skeleton. Of course nobody believed them and the people outside poured in to see what was going on.

I emerged from the interview after forty minutes to tell the other candidates how awful the interview had been. I was appointed to the position! Professor Steiner used me to do all the odd jobs in the X-ray department for the next two years. As the junior doctor I worked in the dark with the oldest Watson X-ray set. Every time I took an erect X-ray the large steel edged cassette containing the film would slide across and usually fall out of the carriage landing on the floor with a loud crash frightening everybody in the darkened room.

It was a time of great innovation at the Hammersmith: the first renal transplant was carried out; micturating cystograms were started. After initial problems with old ladies standing up in the dark being unable to ‘pee’ when the urine hit the steel bucket with a tinkle, the problem was solved by lining the bucket with sound deadening polythene. Friday was ladies’ day when I was the only radiologist who performed Hysterosalpingography. It was done in a small room with a boiling water sterilizer in the corner. When I came out to view the films the steam poured out of the door and I would appear in a cloud of steam as a fearsome figure wearing large dark goggles and a long lead apron to the consternation of the waiting mixture of NHS and private practice ladies.

Professor Steiner was a great leader and inspiration. I will always be grateful to him appointing me to a job in the Hammersmith to start my career in the NHS. https://www.rcr.ac.uk/college/obituaries/professor-robert-steiner


About Ralph McCready

I graduated in Medicine from Queen’s University Belfast and then worked as a Houseman in the Royal Victoria Hospital. When I came to England I studied for the MSc in Radiation Physics and Biology and the Diploma in Radiodiagnosis at Guy’s Hospital London. After working as an SHO in Radiology at the Hammersmith Hospital I was appointed to a research position at the Institute of Cancer Research in Sutton, Surrey. With the development of a Nuclear Medicine Department at the Royal Marsden Hospital I became the consultant in charge for over 40 years. In 1987 I was awarded a DSc by Queen’s University Belfast, the British Institute of Radiology Barclay Prize in 1973, an Hon. FRCR in 1975, an Honorary Fellowship of the Faculty of Radiologists Royal College of Surgeons, Ireland in 1992 and made an Honorary Member of the Japanese Radiological Society also in 1992. I was appointed to a personal chair in Radiological Sciences in the Institute of Cancer Research in 1990.

As a founder member of the British Nuclear Medicine Society I have recently co-edited a book celebrating the 50th Anniversary of the Society and the development of radionuclide studies in the UK.https://link.springer.com/book/10.1007/978-3-319-28624-2

When MRI created excitement in the air

NHS

Dr Adrian Thomas shares his experience of working as a radiologist and how excited he was to see the EMI/CT scanner for the first time. 

 

adrian thomas

Dr Adrian Thomas

In my time as a radiologist I have seen the amazing growth and flowering of radiology. I entered medical school in 1972, which was the year that the CT/EMI scanner was announced by Godfrey Hounsfield and James Ambrose at the BIR Annual Congress; and I started radiology at Hammersmith Hospital in 1981, which coincided with the opening of their MRI scanner. I don’t think that either of these events were connected!

 

picture. 1

X-ray Television at Farnborough Hospital in 1970

When I started medical school everything looked so advanced and exciting to my young eyes. As I look back now it all seems rather primitive. Computers were in their infancy, and imaging was almost all traditional. However, I liked the X-ray departments that I saw, and was taught by Peter Bretland at the Whittington Hospital, and by the great George Simon who was a pioneer chest radiologist. Both were inspirational teachers.

OLYMPUS DIGITAL CAMERA

Old X-ray cassette, pre-digital

The juniors today will find it difficult to understand how very different things were. As a junior doctor, practising emergency medicine or surgery with only minimal imaging was not easy. Many assumptions were made. So for example, an older person with left iliac fossa pain and fever was assumed to have acute diverticulitis. They were treated with intravenous fluids, antibiotics and a nasogastric tube; a barium enema was then arranged as an outpatient. Many exploratory laparotomies were performed for undiagnosed acute symptoms, and the surgeon had only a limited idea as to what would be found. We had plain films, contrast studies and nuclear medicine, but no CT and only limited access to ultrasound. I can remember patients who would have been managed entirely differently today with modern imaging. In particular, an accurate diagnosis made by CT or ultrasound may preclude the need for invasive surgery.

5 Store for conventional film packets

Store for conventional film packets. Large storage rooms were needed for storing X-ray film packets, with many filing clerks

I was a surgical houseman in 1978-9, and I recollect one particular patient that had done something that you should never do, that is to polish the floor  underneath a carpet. He had come downstairs, and had stepped onto the carpet. The carpet had slid forwards, and he fell backwards hitting himself hard on the occiput. He presented with a severe headache, but no neurological signs. His skull plain film X-ray showed no fracture, and I admitted him for neurological observations. After 24 hours he remained well, but still had his severe headache. The surgical team decided to keep him in  hospital for further observation. We kept him for well over a week, and he remained well although with a persistent headache. We then finally sent him home. I had a phone call some days later from another hospital. My patient had unfortunately died, and the other team wanted to know what we had been doing. I explained what had happened, and the voice on the ‘phone said that this was all very reasonable and we could not be criticised. Today the patient would have been scanned, a potentially treatable lesion could have been found, and this young man could be alive today.

3 Traditional cassette opened to show intensifying screens and film

Traditional cassette opened to show intensifying screens and film

I had first seen the EMI/CT scanner when my consultant took his firm of neurology students to see the new scanner at the National Hospital in Queen Square, where he had clinical sessions. I was fascinated by the images we saw, and the radiologist Ivan Moseley showed us the capability of the scanner. I could feel the excitement in the air, and a knowledge as to how much we could learn about the natural history of various diseases. I was also aware of the excitement in the air when I was at Hammersmith Hospital as a registrar  in Radiology. We were being taught tradition imaging – plain films, barium meals and enemas, and IVPs. I became quite good at TLAs (trans-lumbar aortograms), when a long needle was passed into the prone anaesthetised patient, and contrast injected to show the peripheral vessels. However, whilst I was learning the traditional techniques, Graeme Bydder, from the MRI Unit, used to join us for our lunchtime meetings and show us the recent scans hot off the printer. This was long before the days of digital transfer of images and PACS. I remember being excited by the images of NMR as it was called then, and realising how the neurosciences would be revolutionised.

OLYMPUS DIGITAL CAMERA

Bags of films for reporting. Once a common scene in reporting rooms

Imaging has utterly transformed both the practice of medicine, and also how we look at ourselves. It is all too easy to be cynical about the modern world and whist things may always improve major advances have been made. However, all of these changes were quite unpredictable when the NHS was set up, and it is a major achievement that these new imaging techniques have been introduced. Modern imaging is readily available for our patients, and has transformed untold numbers of lives. Godfrey Hounsfield was always very humbled by the many letters that he received from patients and relatives thanking him for his invention.


About Dr Adrian Thomas

Adrian Thomas is a radiologist, and visiting professor at Canterbury Christ Church University. He has been President of the Radiology Section of the Royal Society of Medicine, and of the British Society for the History of Medicine. He is the Honorary Historian to the British Institute of Radiology. Adrian has written extensively on the history of radiology writing many papers, books and articles. He is currently, with a colleague, writing a biography of the first woman radiologist and woman hospital physicist.  He has had a long-term interest in role development in radiography, and teaches postgraduate radiographers.

 

A revolution in imaging: radiology memories for #NHS70

NHS

Professor Adrian K Dixon was born in the same year that the NHS began. Here he reflects on what the NHS has given him and the revolution he has experienced in the world of radiology.

 

Adrian Dixon

Professor Adrian K Dixon

I was born in 1948 and, 70 years on, I remain one of the most passionate supporters of the NHS. Like many of my generation, I have received huge personal benefit from the NHS over the years; both my elbow fractures were brilliantly treated in Accident and Emergency Units; joint replacements for osteoarthritis have provided renewed mobility latterly; audiology services have looked after my long-term inherited deafness and allowed me to function reasonably well so far.

Training in medicine in Cambridge (1966–9) and London (St Bartholomew’s Hospital, 1969–72) was very different from nowadays. On hour one, day one, as a young houseman, sister said to me: “There are three patients for myelography today –  there are three trays set up for lumbar puncture – all you have to do is to send some cerebrospinal (CSF) fluid off to the lab and instil the Myodil before they go down to radiology where Professor du Boulay will be waiting….!” I had not even seen a lumbar puncture at that stage but I learnt quickly at the hands of an excellent registrar. Then I went off for training in General Medicine at Nottingham General Hospital in the excellent Professorial Unit led by Professor Mitchell and Dr (later Professor) Hampton. Any patient over 65 then was ‘geriatric’. I well remember one elderly lady recovering from a cardiac event who was not quite well enough to go home where she lived alone – I said: “I think you need a few days in our convalescent home in Cleethorpes (yes, the NHS provided such things in those days!)”. Her reply: “Oh lovely; I have never seen the sea”. No package holidays or low-cost flights back then!

I was extremely lucky to train in radiology during the 1970s and to be involved with the beginning of the revolution in imaging, namely the introduction of ultrasound, CT and MRI. These advances were truly miraculous compared with the fluoroscopic techniques of old. Indeed image intensification was only just becoming sophisticated while I was training and I did my fair share of barium work using direct fluoroscopy following dark adaptation with red goggles! This even persisted after my move to Cambridge when I was given responsibility for imaging services at the local geriatric hospital where the ageing equipment was nearly as old as some of the patients!

Picture1

After a brief spell in paediatric radiology, I became fascinated by Computed Tomography and I was lucky to be appointed as a Research Fellow at St Bartholomew’s Hospital. There, Dr Ian Kelsey Fry had the foresight to install one cranial and one whole body CT systeminto 2 standard X-ray rooms (an excellent strategy – replacing old technology rather than merely adding on the new). This gave me the experience to be appointed as a young lecturer/Honorary Consultant at the newly emerging Clinical School in Cambridge (thanks to the risk taken by my lifelong friend Professor Tom Sherwood).

In partnership with NHS radiological stars in Cambridge (Desmond Hawkins and Chris Flower, to name but two), Tom Sherwood forged a highly successful combined University/NHS Radiology Department which continues to this day. I was fortunate to be given free rein to develop Body CT and the townspeople generously raised the money for a machine which was opened by HRH the Prince of Wales in 1981. But the NHS was not quite ready for CT! Not only did the town-based charity have to pay for the building, it also had to provide running costs for the first five years; we only received subsequent NHS funding in 1986 after a thorough Department of Health Audit of our work. Even then the local NHS was sceptical; the local oncologists saved the day by suggesting that they could manage more of their patients as outpatients if CT was available. The outstanding local fundraisers were so successful that the charity was able to fund top-of-the range MRI systems in Cambridge for some decades thereafter. Although there was one generous distribution of NHS funding for CT systems on the back of Sir Mike Richards’ cancer initiatives, NHS funding for high-end equipment has never really been properly addressed.


About Professor Adrian K Dixon

BIR Toshiba Mayneord Adrian Dixon 4

Professor Adrian K Dixon

Professor Dixon is Emeritus Professor of Radiology at the University of Cambridge and a retired Consultant Radiologist. He has published extensively on Computed Tomography and Magnetic Resonance Imaging and has edited several textbooks. He was Warden of the Royal College of Radiologists (Clinical Radiology, 2002–2006) and MR Clinical Guardian to the UK Department of Health (2004–2007). He has been awarded honorary Fellowship/Membership of Radiological Societies in Austria, Australia & New Zealand, France, Hungary, Ireland, Sweden, Switzerland and the USA. He was Editor-in-Chief of European Radiology 2007–12 and was awarded the Gold Medal of the European Society of Radiology in 2014. He has been awarded Honorary Degrees by Munich and Cork. He was Master of Peterhouse, University of Cambridge 2008–2016.