The case of the missing fingers!

NHS

Professor Roger Dale remembers how he got his first job in medical physics and how he thought he’d discovered a radiation martyr.

 

Roger Dale circa 1966

Anxiously seeking a job in medical physics on completion of my first degree in 1966 I quickly became aware that basic grade physicist positions in large centres were difficult to find and, for a while, I was unsure what to do. Being out of work I wrote in some desperation to a (very small) radiotherapy centre in Kent pointing out my predicament and asking if I could join as a porter until such time as I could obtain a physicist position in a larger department. To my great surprise I received a phone call a day or two later from the head radiotherapist (Dr B) inviting me along for an informal chat with him, during which it transpired that the hospital had no requirement for any more porters but did have a vacant establishment for a radiotherapy physicist at principal grade! The principal post had already been offered to a gentleman in New Zealand but it would take a month or two before he could take up the position. Therefore, as there was no physicist in post at that time, Dr B suggested that I join as an acting-temporary(!) basic grade until the principal appointee arrived in the UK. Needless to say, I agreed without hesitation.

The necessary paperwork was sorted out remarkably quickly (the old personnel departments always seemed notably more efficient than the burgeoning HR empires which later followed) and my career in medical physics began, albeit rather shakily. My only ‘supervision’ came from occasional conversations with Mr W, the Chief Technician, whose own duties were entirely focused on running the film badge and thyroid uptake services. He was not at all involved on the radiotherapy side of things so I spent many hours buried deep in the standard radiotherapy physics textbooks of the time. That reading reinforced my desire to stay in medical physics because here were the seemingly abstract physical and mathematical concepts encountered during my degree studies being successfully applied to highly relevant clinical issues. Amongst other things I brushed up on the fundamentals of radium dosimetry, this being necessary since Dr B performed several radium implants each week (remote afterloading systems were only just being introduced back then) and, as I was now the sole medical physicist (of sorts) within a 50 mile radius, he required me to be present during the procedures.

Dr B’s theatre sessions were an eye-opener. Apart from a certain squeamishness at witnessing surgery for the first time, I found his implantation technique quite scary since, although a full range of surgical implements and manipulators were at his disposal, he had a habit of giving all the radium needles a push with his fingers. Worse, it was impossible not to notice that several of his fingers were in fact missing! Even a greenhorn like me knew that physically touching radioactive sources was definitely a practice not to be recommended and the fledgling scientist in me began to ponder on cause and effect.

For several days it worried me that Dr B might be paying a very high price in order to pursue his noble vocation and I was unsure how (or if) I should air my concerns, especially as my status as an unsupervised acting-temporary basic grade physicist of just a few weeks’ standing hardly conferred much authority. Eventually I plucked up the courage to speak to the Chief Technician, telling him how convinced I was that Dr B was suffering radiation damage as a direct result of his operating technique. Mr W’s reaction was not quite what I expected. After some snorts of derision at my expense he then took some delight in pointing out that Dr B had been in the RAMC during the war. He had landed on the Normandy beaches where his jeep had hit a mine, and that was how he had lost several of his fingers. Somewhat chastened, I went away to reflect on the fact that my powers of deductive reasoning might be in need of substantial refinement.

Shortly after this awkward conversation the newly-appointed principal physicist arrived from New Zealand and, contrary to all my expectations, Dr B suggested that I stay on for a while longer to gain some first-hand experience working with the new man. This was to be a tremendous bonus as the knowledge and advice I picked up in the weeks following gave me enough of an advantage to successfully apply for a substantive post (i.e. neither acting nor temporary) in a large London centre, after which I never looked back.

Roger Dale recentToday’s NHS is nothing like the one I joined in 1966 and specialised scientist training is much more formalised and incalculably better. No one these days could be appointed in the manner that I had been but Dr B, like most other NHS professionals then and now, was motivated by good intentions and his thoughtfulness over fifty years ago put me on the path to a rich and fulfilling career in medical physics and radiobiology. I discovered later in life that Dr B had told one of his colleagues that he had helped me because he “wanted to give the lad a chance”. What he gave me was a chance that was truly exceptional and this lad has been immensely grateful ever since.


About Professor Roger Dale

Roger Dale retired from his post at Imperial College Healthcare in 2010 following an NHS career spanning 43 years. His main scientific interest has been the development of radiobiological models which can be used to quantitatively assess the biological impact of radiotherapy and other cancer treatment modalities. He is widely published and the clinical significance of his work has been recognised through the award of a number of prestigious scientific prizes and through his  parallel appointment, in 2005, as Professor of Cancer Radiobiology in the Faculty of Medicine at Imperial College. He continues to be involved in research and teaching.

Advertisements

My first day in radiotherapy physics: reflections of a medical physicist

NHSIn 2010 Karen Goldstone was awarded the MBE for her services to healthcare. Here she reflects on the primitive tools used for radiotherapy patient outlines back in the 1970s and remembers the wise advice she was given on her first day as a radiotherapy physicist.

BIR

I started work in the NHS as a Hospital Physicist in 1970. Prior to that I did the MSc in radiation Physics based at Middlesex Hospital. When doing a placement in nuclear medicine, computer tapes had to be taken to University College about a fifteen minute walk to the other side of Tottenham Court Road and fetched the next day hopefully having run successfully.

In my first post I expected to be doing mainly diagnostic radiology physics but discovered that that was rather a luxury field and so most of my time was spent doing radiotherapy physics. Those were the days when patient outlines were taken using a strip of lead or a flexicurve and planning was done using tracing paper and coloured pencils or biros. There was no computer planning of course and we only had one calculator with a paper roll print out so slide rules were in constant use. The main piece of advice I remember receiving on my first day was that if I discovered I had made a mistake I should own up to it straight away and not seek to cover it up – very wise words.

When not doing radiotherapy physics many hours were spent reading out film densities produced using our homemade “Ardran Cassette” in order to check kVp. This was the beginning of setting up a quality control programme for X-ray units. Another time-consuming activity was sealing lithium borate powder into plastic capsules in order to measure dose to radiologists, carrying out various procedures under fluoroscopic control, and subsequently reading the doses received.

Although diagnostic radiology physics was not seen as important it was an exciting time and I was fortunate enough to hear Godfrey Hounsfield give the 1972 MacRobert Award lecture on “Computerised Transverse Axial Tomography” – an invention that has revolutionised diagnostic imaging.

I started my second post in 1974 in a smaller department but with responsibilities in other, far-flung, hospitals. Here I was the radiotherapy physicist (the only one) and also covered diagnostic radiology and radiation protection, but because it was a smaller department and staff had to be versatile I also did some nuclear medicine and even once some ultrasound.

In the peripheral hospitals in my patch one was still using wet developing, one using just a fluorescent screen for fluoroscopic procedures and one an image intensifier viewed not via a camera but via a mirror arrangement.

How times have changed!


About Karen Goldstone MBE

I worked for forty years in the NHS, in radiotherapy physics, diagnostic X-ray physics and all aspects of radiation protection. In 1983 I set up the East Anglian Regional Radiation Protection Service (EARRPS) based at Addenbrooke’s Hospital in Cambridge, and ran it for almost 30 years. I was both a Radiation Protection Adviser and Laser Protection Adviser. I gave physics lectures to radiologists and was a physics examiner for FRCR both in the UK and Malaysia. With colleagues in EARRPS and Cambridge University I ran a number of Radiation Protection Supervisor courses and gave countless IRMER courses to reluctant clinical staff. I was exceedingly surprised to be awarded the MBE in 2010 for services to healthcare.

Since retiring I have taken up rowing and become a Level 2 rowing coach; I have given two courses on Radiation and Health to the University of the Third Age in Cambridge and am otherwise kept busy with my garden, allotment, grandchildren and church activities. I am still involved on one or two committees for medical physics and radiological protection.