“The Radiology Reset Button – overcoming the normalcy bias”

Fodi KyriakosFodi Kyriakos explores how the COVID-19 pandemic could be the catalyst for change in radiology and encourages our community to grasp the opportunity to “seize the moment”  and plan for recovery.

At the beginning of 2020, if someone had told radiology leaders that all NHS outstanding reporting backlogs would be reduced to virtually zero by May, I’m sure they would have looked at you in disbelief and asked what sorcery had been involved, but this situation is exactly where we find ourselves today.

 

Normalcy Bias – Noun [edit]

normalcy bias (plural normalcy biases)

The phenomenon of disbelieving one’s situation when faced with grave and imminent danger and/or catastrophe. As in over focusing on the actual phenomenon instead of taking evasive action, a state of paralysis.

Historical challenges

In the past, it has often taken lots of effort to either invoke or accept change of any kind in radiology and for those managing services, there’s also been a certain amount of risk associated with putting your head above the parapet or being a trailblazer. It has been sometimes easier to follow the well-trodden path rather than to create a new one. Workloads and budgetary constraints have also been a disabler, restricting decision making to the ‘here and now’. This has resulted in failing, or in most cases, not being able to foresee or plan for events that have never happened before, such as an event like a pandemic crisis. Psychology refers to this state of being as normalcy bias. For those who are not familiar with the term, you will certainly be aware of its connotations and radiology now finds itself at this cross-roads.

Ever since the introduction of digital radiography and PACS, NHS radiology reporting backlogs have been a contentious issue among experts, and a recurring feature in the mainstream media! Often being highlighted (and with some justification) in relation to areas such as missed cancer diagnosis, where even the slightest of delays can have a significant bearing on the overall outcome.

Serious backlogs

The extent to which backlogs were a serious issue in the UK was further exacerbated by various Care Quality Commission (CQC)  inspections, which raised concerns regarding reporting backlogs that resulted in delayed or missed diagnosis of conditions that may have otherwise been picked up.

By the end of February 2020, the situation of backlogs was as much an issue as at any time before. Insufficient reporting capacity had led to a build-up of outstanding reports, which in turn meant that outsourcing was at its highest ever levels and growing pressures to meet new deadlines, such as the cancer pathway targets, were increasingly exposing the lack of options available to resolve the problem.

So, you would have been excused if you thought that a crisis such as the COVID-19 pandemic would simply exacerbate the reporting challenges facing radiology. However, this has not been the case. Instead, we have witnessed radiology’s own “clear the decks” exercise, where in fact the complete opposite situation has occurred, resulting in backlogs across the UK being virtually eliminated. Who would have thought that the worst crisis to hit the country (and the world) in 75 years would be a catalyst for NHS radiology departments to press the reset button?

Reset image

Of course, we recognise the superficial nature of this situation. During the pandemic, practically all routine referral activity came to a grinding halt, which allowed radiology to concentrate on COVID-19 and Emergency Department (ED) patients. Chest X-rays and CTs were identified as two of the key diagnostic tools for the virus, but the volumes were manageable. Accident and Emergency footfall was reduced to almost 50% of its usual figures, so reporters were practically able to deliver a ‘Hot-Reporting’ examination for every patient requiring imaging. Something which ED and Intensive care unit (ICU) consultants have grown quickly accustomed to.

During this time, radiology was also still required to work to critical staffing levels, so radiographers and radiologists were covering 24/7 rotas, but due to the lack of activity outside of portable X-ray scanning in ICU, many staff were not being utilised. So, while this enabled the catch up in radiology reporting to take place, what we witnessed was the ‘ying and yang’ of radiology. On the one hand, integral to the continuity of a patient’s pathway and critical to defining an outcome – AND on the other hand, completely dependent on throughput from referrers to maintain activity levels.

Seizing the moment!

So what happens next? Well, in a world where we can guarantee almost nothing, in this situation, we can guarantee that radiology will remain the centre point for the recovery phase of the pandemic, but with the added challenge of complying to ‘social distancing’ and ‘equipment cleaning’ guidelines, how do we manage the continuation of treating COVID-19 patients, while reintroducing ‘business as usual’ and ‘deferred’ patients whose treatment has been delayed?

The “Reset Button” has enabled something else to happen. For the first time, there is now some headspace to plan for the recovery phase and for the next phase at least, there is now funding available to support the recovery. So how do we avoid going back to where we were before the pandemic? How do we seize the moment?

Time to make the changes!

Albert Einstein once famously said: “We can’t solve problems by using the same kind of thinking we used when we created them.” This quote has never been more poignant in the present day and while the pressure to manage change will be at its highest, this is the right time to make these changes happen! With the benefit of ‘The Reset Button’, if we can learn from the past and apply new ways of working moving forward, we can avoid falling into the trap of the normalcy bias and witness the radiology reset button offering a new, efficient and more streamlined radiology department moving forward.

Everything you wanted to know about radiology but were afraid to ask…

On Wednesday 17 June, a live event organised by InHealth, in partnership with The British Institute of Radiology and the Society of Radiographers is taking place, titled: “The Radiology reset button has been pressed”. The aim is to tackle these challenges and support radiology managers as they enter the recovery phase. It will bring together senior figures from radiology and within healthcare to offer insights, opinions and advice on how we can approach this coming period and use what positives we have experienced during the pandemic to create service improvements throughout radiology.

There will be opportunities for radiology managers, clinical leads, radiographers and radiologists to put their questions to the speakers in the panel discussions after their presentations.

REGISTER FOR THE RADIOLOGY RESET BUTTON HAS BEEN PRESSED HERE

(The event is free for all)
About Fodi Kyriakos

Mr Fodi Kyriakos is a former director of RIG Healthcare and founder of RIG Reporting,
the UK’s first provider of external radiographer reporting services. In 2016 he joined The InHealth Group following its acquisition of RIG Reporting and is now the Head of Reporting across the Group. His service specialises in delivering plain film reporting solutions and is the only provider to offer both on-site and telereporting services.
Fodi has over 22 years experience in workforce and staffing solutions and 17 years working exclusive within Imaging and Oncology. He is a member of the Institute of Healthcare Managers and a regular contributor of professional development events across radiology.

 

The flu epidemic of yesteryear: the role of radiology in 1918–20

adrian thomas

Dr Adrian Thomas

100 years ago the UK was facing a fast-moving outbreak of epidemic influenza pneumonia, known as the “Spanish Flu”.

Radiology played an important part in diagnosis, although the crisis was without the scientific knowledge, strategic management and communications we have today. Here, Dr Adrian Thomas explores the six patterns of infection in this unpredictable and powerful disease.

 

 

Radiology is playing a central role in the diagnosis of COVID-19 today, and 100 years ago was also playing an important role in the diagnosis and characterisation of the outbreak of epidemic influenza pneumonia of 1918–1920. A combination of fluoroscopy and radiography was then used, with the occasional utilisation of stereoscopy. The greatest pointer to a diagnosis of epidemic influenza pneumonia in a given patient was the presence of the epidemic, although there were some specific features to indicate the diagnosis. The etiological cause of influenza was not known at the time, being first discovered in pigs by Richard Shope in 1931.

Spanish flu

The epidemic of 1918 far exceeded previous ones in its intensity. It had a high mortality in young adults with the very young and very old being comparatively immune. The associated pneumonia was particularly virulent. In the case of the troopship The Olympic (sister ship of The Titanic) there were 5,951 soldiers on board. Initially there were 571 cases of acute respiratory disease, but within 3 weeks there were 1,668 cases. Of these, 32% had pneumonia, of which 59% died. In any locality the duration of the epidemic was from between 6–8 weeks, and approximately 40% of the population was affected (Osler, 1930).

Six patterns of infection were identified, with correlation of clinical, radiological and post-mortem findings (Sante, 1930., Shanks, et al. 1938). Dr Leroy Sante, the pioneer radiologist from St Louis, described epidemic influenza pneumonia as “the most lawless of the chest infections.” Abscess formation was seen frequently, and was commonly of the small and multiple type. Radiological changes were seen developing day by day, and clinical resolution needed at least six–eight weeks since there had commonly been lung destruction and healing by fibrosis needed to occur.

The patterns were:

Type 1: Peribronchial invasion with infiltrates that enlarge and become confluent forming small areas of consolidation (figures 1 & 2, below). This was not confined to one lobe, but could appear in all lobes as a true bronchopneumonia. This was similar in appearance to ordinary bronchopneumonia.

1Type 1, Influenza bronchopneumonia

Figure 1

2Type 1, Influenza bronchopneumonia_Viewed as from behind

Figure 2

Type 2: Peribronchial invasion with infiltrates that enlarge and become confluent to form solidification of an entire lobe (figure 3, below). The changes remained confined to a single lobe. It was viewed as a true bronchopneumonia but with a lobar distribution (“pseudolobar pneumonia”). Different lobes may be invaded one after another. The pseudolobar pattern was the commonest type, and could resolve without further spread. The presence of previous isolated infiltrates would distinguish this type from common lobar pneumonia. There was a tendency to break down with extensive cavitation.

3Type 2, or pseudo-lobular

Figure 3

Type 3: This starts as blotchy infiltrates that coalesced to form a general haziness over a part of a lung, suggesting a haematogenous origin (figures 4 and 5, below). At post-mortem this was found to be an atypical lobular pneumonia, a “diffuse pneumonitis”, that was so commonly seen during the influenza outbreak. It resembled the streptococcal (septic) pneumonia that was often seen in association with septicaemia when there was no epidemic. The spread was rapid, and the prognosis was poor. Death commonly occurred within the week.

4Type 3, resembling streptococcal (septic) pneumonia

Figure 4

5Type 3, resembling streptococcal (septic) pneumonia

Figure 5

Type 4: A type starting in the hilum and spreading rapidly into the periphery, the so-called “critical pneumonia” (figure 6, below). This was attended with a high mortality. Post-mortem showed a purulent and haemorrhagic infiltration around the larger bronchi. There was often marked cyanosis.

6Type 4, the so-called “critical pneumonia

Figure 6

Type 5: This started in the dependent part of the lungs, with continuous upwards spread (figures 7a and b, below). This was an atypical lobular pneumonia, there was no associated pleural fluid, and it was usually fatal. Initial infection in the costo-phrenic angle spread within 24 hours to involve the lower lung, and death occurred within 48 hours. Clinical features included extreme prostration, high temperature, and delirium. This pattern with rapidly advancing consolidation was seldom seen in other conditions.

7a Type 5. This started in the dependent part of the lungs

Figure 7a

7b Type 5. A film taken 12 hours after 7a

Figure 7b

Type 6. A true lobar pneumonia was only seen rarely.
The prognosis of epidemic influenza pneumonia was difficult to determine. So, as an example, a patient who was resolving would suddenly have changes extend into the other lung and then die. Another patient with successive involvement of all lobes could recover completely. A patient with only minor lung involvement might die, and another with extensive consolidation would recover completely.

Radiologists continue to be in the front line in the treatment of infectious diseases, and although our modalities are now more advanced than a century ago, their contributions remain essential. It is also noteworthy that the simple CXR also remains central.

Figures:

1. Type 1, Influenza bronchopneumonia. Image seen as a positive.

2. Type 1, Influenza bronchopneumonia. Peribronchial clusters of infiltration, with no relation to lobar architecture. Viewed as from behind.

3. Type 2, or pseudo-lobular.

4. Type 3, resembling streptococcal (septic) pneumonia. Image seen as a positive.

5. Type 3, resembling streptococcal (septic) pneumonia. Blotchy ill-defined infiltrates which coalesce to form a general haziness. Viewed as from behind.

6. Type 4, the so-called “critical pneumonia.”

7a. Type 5. This started in the dependent part of the lungs, and this early film shows consolidation in the costophrenic angle (black arrow).

7b. Type 5. A film taken 12 hours after 7a. The lower right lung is consolidated, and the patient died 12 hours later. Post mortem showed a solid lung with no effusion.
Readings:

Osler, William. (1930) The Principles and Practice of Medicine. 11th Edition, Thomas McCrae (Ed.). London: D Appleton.

Sante, Leroy. (1930) The Chest, Roentgenologically Considered. New York: Paul B Hoeber.

Shanks, S Cochrane., Kerley, Peter., Twining, Edward W. (Eds). (1938) A Textbook of X-ray Diagnosis by British Authors. London: H. K. Lewis.

 

Dr Adrian Thomas FRCP FRCR FBIR, BIR Honorary Historian

About Dr Adrian Thomas

Dr Adrian Thomas is a semi-retired radiologist and a visiting professor at Canterbury Christ Church University. He has been President of the Radiology Section of the Royal Society of Medicine, and of the British Society for the History of Medicine. He is the Honorary Historian to the British Institute of Radiology. He has had a long-term interest in role development in radiography, and teaches postgraduate radiographers.

Adrian has written extensively on the history of radiology writing many papers, books and articles. He has, with a colleague, written a biography of the first female radiologist and female hospital physicist: Adrian Thomas and Francis Duck: Edith and Florence Stoney, Sisters in Radiology (Springer Biographies) Springer; 1st ed. 2019 edition (1 July 2019).

© Thomas / 2020

From darkroom to digital: Tracing the transformation of Radiography

NHS

Stewart Whitley reflects on how technology has revolutionised radiographic imaging. 

 

Since the launch of RAD Magazine back in 1975, radiographic imaging as we know it has changed dramatically, far beyond the concept of what anyone could have imagined at that time. And just as smart mobile phone technology has revolutionised how we communicate, so too has the emergence of digital imaging technology transformed the X-ray department while at the same time providing both regional and national connectivity.

Fig 1

Figure 1: At work in the chest room at New Ealing Hospital, London. From RAD Magazine, July 1979

A few of us will remember with fondness those ‘bygone days’ when the darkroom was a hive of activity and was central to all that happened in the X-ray department; all permanent images, and for that matter, reporting was dependent on film/screen technology and film processing chemistry. Back then there was the gradual but necessary progression from manual processing, with those famous drying cabinets, to the first automatic dryers and then the emergence of automatic processing which was the first step in revolutionising film processing and the eventual demise of the darkroom. Even though those wonderful automatic film processors could eventually process film in 90 seconds, a great deal of care and attention was still necessary to keep rollers, processing tanks and processing chemicals in tip-top condition. And what department was without a silver recovery system to generate income? Then everything changed dramatically overnight with the introduction of daylight processing. Different manufacturers had different solutions but the overall effect was to transform the X-ray department and free up the darkroom technician, many of whom became X-ray helpers – the forerunners to the modern image support worker (figure 1). While image acquisition using modern film/screen technology progressed steadily with the introduction of more efficient and higher quality image systems, the focus was on radiation dose reduction, with X-ray manufacturers offering a range of general X-ray and fluoroscopic systems which provided welcome features to reduce patient and staff dose.

Fig 2

Figure 2: Radiologists and radiographers attending a preview of Agfa Gevaert’s daylight processing system in London. From RAD Magazine, March 1977

Older X-ray systems were powered with what would be considered today outdated X-ray generator technology and X-ray tube design, with corresponding limitations on short exposure times and geometric sharpness. Thanks howeverto consistent research and development in generator technology and X-ray tube design, the problem of high tube output and short exposure times with associated production of inherent high heat was resolved. This facilitated multiple exposure equipment for cardiovascular imaging and general angiography with their inherent demands for high quality sharp images at low radiation doses. Such changes have enabled the acquisition of motion-free images of the vascular tree, coronary vessels and heart anatomy, giving spectacular images of cardiac function and anatomy. The X-ray generator control desk is now hardly recognisable from those found in departments back in 1975 – some still had voltage compensation controls and meters for you to manipulate before you started the day (figure 2).

Gone are those massive exposure control dials for individual control of Kv, Ma and time. Such control desks were large and floor standing, unlike modern small desks which rest on a bench or can be wall mounted and synchronised to the X-ray tube housing/light beam display unit. For exposure factor selection, we are no longer confined to manual selection, thanks to the development of anatomical programming selection combined with the introduction of automatic exposure control – something that we take for granted nowadays – but its use still requires skill and knowledge of the location and use of the relevant ionizing chambers to select the most appropriate exposure conditions. Used correctly, image quality will be consistent with the optimum use of radiation dose. The design of X-ray tables and ceiling tube suspension systems has been a gradual process, developing from simple solutions to fully integrated motorised units where preprogramming of the location of the X-ray tube/table of a vertical Bucky is linked to the body part selected for examination, requiring less effort from the radiographer in positioning heavy equipment.

Fig 3

Figure 3: Coventry and Warwickshire Hospital’s ceiling-mounted equipment in its new X-ray unit. From RAD Magazine

We now see the control of exposure factor selection built in to the modern X-ray tube housing/light beam diaphragm display unit. This saves a great deal of time and releases more time for patient care, which has been further enhanced with the introduction of rise and fall tables with floating table tops – something which is taken for granted compared to the old days with fixed-height tables and no facility to move the patient other than brute force (figure 3). Overall, the advances in design with improved ergonomics have been complemented with a range of dose information and dose saving features such as the introduction of DAP meters (now a feature of all X-ray systems), additional selectable X-ray tube filtration for paediatric radiography, and the ability to remove grids in the Bucky systems to lower patient dose.

Over the years, changes in standard radiography requests and techniques have emerged which have been driven by the introduction of new technologies and patient pathways. No longer, for instance, are those well-loved isocentric skull units required because basic skull radiography has become a thing of the past and, if necessary, is replaced with the use of CT. As a result, there has been a loss of this skill, but as one modality is lost others like OPG and cone-beam computed tomography (CBCT) have found their way into the X-ray department. Continuing this theme, fluoroscopy procedures such as barium enema and barium meal procedures are no longer in favour, compared to yesteryear when they were undertaken mostly on equipment based on the undercouch X-ray tube design with over-the-table image intensifier. Not only have such fluoroscopy units in the UK diminished in number but they have been replaced with equipment with a more X-ray tube and image detector unit. This is complemented by a range of image selection features such as digital subtraction and road mapping for angiography, as well as a number of exposure and dose control options from the main control console or on a mobile control desk that can be positioned anywhere in the room.

Image 4

Figure 4: Blackpool Victoria Hospital’s Farage Unit equipped with a new Philips C-arm angiography unit with CBCT capability

Such C-arm systems can also support CBCT. This truly is a leap forward in design and capability, with such configurations providing volumetric CT capabilities which in the angiography suite provide the clinician with a 3D orientation of pathology as well as a feature to plan the optimum orientation for positioning a biopsy needle, without damaging vital organs or arteries (figure 4). Undoubtedly, however, the introduction of digital technology has transformed how we acquire images. The development of both computed radiography (CR) and direct digital radiography (DDR) has been fascinating to observe. In the early days of this development, DDR with large detectors was mostly fixed and integrated into the vertical Bucky and table design while CR was based mainly on conventional cassettes, thus giving the radiographer greater flexibility and the ability to undertake examinations in the conventional way. However, all of that has changed with DDR now presented with mobile flat detectors, built-in wi-fi technology, and in different sizes capable of being used in a similar way to film/screen cassette radiography. This has revolutionised the speed in which images are acquired and, with the development of mobile DDR based X-ray systems, its use in high dependency patient care units such as ITU and SCBU is providing the clinician with instant images, thus assisting them to make immediate and important treatment decisions. Overall the X-ray department has been changed forever – what next?

This article was first published in RAD Magazine, 43, 500, 22, 24. Reproduced with permission.


About Stewart Whitley

Stewart Whitley

Stewart undertook his radiography training in the Royal Army Medical Corps qualifying in 1967 at the Royal Herbert Hospital, Woolwich, London.  After serving in the Army he returned to N. Ireland working first at the Lagan Valley Hospital, Lisburn and then at the Royal Victoria Hospital, Belfast where he qualified as a Radiographer Teacher before moving to Altnagelvin Hospital, Londonderry as Deputy Superintendent Radiographer.

In 1978 he was appointed District Radiographer at Blackpool Victoria Hospital where he remained until the autumn of 2006 when he retired from the NHS as Directorate Manager of Radiology and Physiotherapy Services.

Shortly after leaving the NHS he established UK Radiology Advisory Services, a small company dedicated to providing medical imaging advice and support to various NHS and private sector organisations and educational establishments.

Stewart has a passion for Radiography and his professional body, the Society and College of Radiographers, and has served as a Council Member, Honorary Secretary of the N. Ireland Branch of the Society of Radiographers and as a DCR and HDCR Medical Photography examiner as well as serving on a number of SCOR committees.

He lectures on a number of courses and was an Honorary Lecturer and Coordinator for radiographer lecturers on the FRCR course at Manchester University.

Stewart took on the role of ISRRT’s Director of Professional Practice in April 2018

 

A pregnant goat in the machine: memories of working in radiology

NHS

From dark art to a pregnant goat in the machine, Dr Richard Keal reflects on his NHS career in radiology. 

 

RKeal

When I started training in medicine in 1971, radiology was literally a dark art. The Middlesex Hospital X-ray department was in the basement of the hospital, a gloomy place populated by pale individuals, some wearing red goggles, who were rarely seen outside and certainly never communicated with medical students. We heard rumours of strange investigations performed there, such as air-encephalograms, which sounded more like medieval torture than anything diagnostic. Radiology had very little impact on my life as a medical student apart from my elective in Hamilton, Ontario in 1975. Here I heard a lecture by an eminent neuro-radiologist from England lamenting that he had had to come to Canada to see images from the new “EMI Scanner” – the start of the revolution in imaging.

After qualifying, I tried several specialities before ending up as a cardiology registrar. Here I was responsible for all the emergency pacing and assisting at cardiac catheterisations. I had no radiation protection training other than being told that we had to wear lead coats and radiation monitoring badges. The portable image intensifier kept cutting out and it was only when I was training in radiology that I learnt that this was due to the permitted time limit being exceeded. I often wonder whether this was the reason I developed cataracts later on.

A further career change found me training in radiology in Aberdeen. This was an exciting time: Aberdeen had two CT scanners, new real time ultrasound machines and a completely new department no longer hidden in the basement. However the real star was the NMR (as it was called then) scanner. When I arrived to train in 1983, The Mark 1 (the world’s first whole-body MRI scanner) had been relegated to research use and was available for the radiology trainees to use. I had my head scanned on it. The 64 x 64 pixel image at least proved I had a brain! I was unfortunate to have been scanned just after a pregnant goat had been in it and the smell was indescribable. We were the first trainees in the world to be taught and examined on MRI imaging for our part 1 exam. Looking at the scanner, now in the museum in Aberdeen, it is impossible to believe that a machine built of copper plumbing components with a chicken wire and aluminium foil Faraday cage and a ZX81 processor could have ever produced images.

Coming to Leicester in 1986 was like a step back in time! No MRI, a B-mode ultrasound system and a CT scanner that no registrars were allowed access to. It was here that I did my first (and last) trans-lumber aortagram and saw other investigations such as cervical myleograms. I had learnt to do lymphangiograms in Aberdeen and I used to spend many a quiet morning performing them.

With my interest in cardiac imaging, I was appointed as a consultant cardiac radiologist at the cardio-thoracic centre. I was one of the few radiologists in the country with an interest in echocardiography and in close cooperation with the cardiac surgeons, introduced intra-operative trans-oesophageal echocardiography into the operating theatres, a technique now commonplace and performed usually by anaesthetists today. As a radiologist, the hospital management were used to me asking for expensive pieces of equipment and when it came to replacing our echocardiography systems, they didn’t ask any questions when I told them that digital imaging was now standard, replacing VHS tapes, and that we required a digital archive. The result was the largest digital echocardiography department in Europe complete with a 400 GB optical jukebox the size of a small room. I followed this up by persuading them to install the first dedicated cardiac MRI scanner in the country.

I started my career by learning invasive cardiac catheterisation and ended it by performing CT coronary angiograms, such has been the pace of change in the last 40 years. Unfortunately, imaging appears to have superseded history and the workload is now excessive. The hospital I worked in now has three MRI scanners (two cardiac), two CT scanners, numerous echocardiography systems, two SPECT systems and a PET scanner; all imaging techniques that didn’t exist or were in their infancy when I started in medicine. What does the future hold?


About Dr Richard Keal

1973

I was born in 1953 and educated at Alleyn’s School in Dulwich. I scraped into the Middlesex Hospital Medical School in 1971 with three Cs at A-level having never studied any biology. After an uneventful medical school career, apart from failing pharmacology twice, I qualified in 1976. I immediately married the lovely nurse I had met over the tea urn on the first ward I was on as a medical student. Uncertain as to what area to specialise in, I tried several specialities as a junior doctor including A & E, cardio-thoracic surgery, thoracic medicine and cardiology. I finally settled on radiology and was offered a registrar post in Aberdeen in 1983 after being sent to see a psychiatrist to ensure I was sane. I moved to Leicester in 1986 as a senior registrar and was appointed as a Consultant Cardiac Radiologist at Groby Road Hospital on 1April 1990. In 1995, I became Head of Department at Glenfield Hospital and continued in post until deposed by the merger of the three Leicester Hospitals in 2002. I spent the next years as the grumpy old man of the department gradually withdrawing from various modalities as new consultants were appointed. I retired in 2013, but continued part-time as clinical head of cardiac nuclear medicine and ARSAC license holder. I finally retired in 2017 when the MDU fees became greater than my private practice earnings. Our three sons are pursuing highly successful careers outside medicine.

My first radiology job in the NHS

NHS

What does a jazz band, a ghost train and a figure in dark goggles have in common? They are all part of the NHS 70 memories of Professor Ralph McCready.

Ralph McCready

As a houseman I had the privilege of working for Professor Frank Pantridge, inventor of the defibrillator. I was fascinated by his catheter lab with the combination of physiology and radiology. So I decided to become a radiologist but was advised to go to England (from Northern Ireland) and obtain an impressive degree so that I could return if I wished. So I went to Guy’s Hospital, London to study for an MSc in Radiation Physics and Biology and the Diploma in Medical Radiodiagnosis (DMRD), paying my own fees.

Guy’s Radiology Department was interesting. The radiology chief was Dr Tom Hills who smoked cigars, had a tiny lead apron over the appropriate parts and had made an automatic wet X-ray film processing system.

It was obvious I would never get a radiology job at Guy’s coming from Belfast, speaking strangely, and not having the MRCP (Membership of the Royal College Physicians examination) so I applied for a Senior House Officer (SHO) position at the Hammersmith Hospital London where everybody was equal.

At the Hammersmith I was told by the other applicants that I would not get the job as I had come from Belfast. However I was determined to leave the interview with my head held high. I was first in to the SHO interview and was amazed to see a long row of people on the other side of the table headed by Professor Robert Steiner. He opened the questioning by asking why I was a member of the Musician’s Union. I explained that all my colleagues in the White Eagles Jazz Band had failed their exams, left the University and turned professional. To continue to play with them I had to join the Union. Then I was asked what else I had done, so rising to the occasion I told them I had been the ghost in a ghost train in an Amusement Park. I was bored so I connected the light over the skeleton to be permanently on. The little children came out saying that there was a ghost reading the Daily Telegraph beside the skeleton. Of course nobody believed them and the people outside poured in to see what was going on.

I emerged from the interview after forty minutes to tell the other candidates how awful the interview had been. I was appointed to the position! Professor Steiner used me to do all the odd jobs in the X-ray department for the next two years. As the junior doctor I worked in the dark with the oldest Watson X-ray set. Every time I took an erect X-ray the large steel edged cassette containing the film would slide across and usually fall out of the carriage landing on the floor with a loud crash frightening everybody in the darkened room.

It was a time of great innovation at the Hammersmith: the first renal transplant was carried out; micturating cystograms were started. After initial problems with old ladies standing up in the dark being unable to ‘pee’ when the urine hit the steel bucket with a tinkle, the problem was solved by lining the bucket with sound deadening polythene. Friday was ladies’ day when I was the only radiologist who performed Hysterosalpingography. It was done in a small room with a boiling water sterilizer in the corner. When I came out to view the films the steam poured out of the door and I would appear in a cloud of steam as a fearsome figure wearing large dark goggles and a long lead apron to the consternation of the waiting mixture of NHS and private practice ladies.

Professor Steiner was a great leader and inspiration. I will always be grateful to him appointing me to a job in the Hammersmith to start my career in the NHS. https://www.rcr.ac.uk/college/obituaries/professor-robert-steiner


About Ralph McCready

I graduated in Medicine from Queen’s University Belfast and then worked as a Houseman in the Royal Victoria Hospital. When I came to England I studied for the MSc in Radiation Physics and Biology and the Diploma in Radiodiagnosis at Guy’s Hospital London. After working as an SHO in Radiology at the Hammersmith Hospital I was appointed to a research position at the Institute of Cancer Research in Sutton, Surrey. With the development of a Nuclear Medicine Department at the Royal Marsden Hospital I became the consultant in charge for over 40 years. In 1987 I was awarded a DSc by Queen’s University Belfast, the British Institute of Radiology Barclay Prize in 1973, an Hon. FRCR in 1975, an Honorary Fellowship of the Faculty of Radiologists Royal College of Surgeons, Ireland in 1992 and made an Honorary Member of the Japanese Radiological Society also in 1992. I was appointed to a personal chair in Radiological Sciences in the Institute of Cancer Research in 1990.

As a founder member of the British Nuclear Medicine Society I have recently co-edited a book celebrating the 50th Anniversary of the Society and the development of radionuclide studies in the UK.https://link.springer.com/book/10.1007/978-3-319-28624-2

When MRI created excitement in the air

NHS

Dr Adrian Thomas shares his experience of working as a radiologist and how excited he was to see the EMI/CT scanner for the first time. 

 

adrian thomas

Dr Adrian Thomas

In my time as a radiologist I have seen the amazing growth and flowering of radiology. I entered medical school in 1972, which was the year that the CT/EMI scanner was announced by Godfrey Hounsfield and James Ambrose at the BIR Annual Congress; and I started radiology at Hammersmith Hospital in 1981, which coincided with the opening of their MRI scanner. I don’t think that either of these events were connected!

 

picture. 1

X-ray Television at Farnborough Hospital in 1970

When I started medical school everything looked so advanced and exciting to my young eyes. As I look back now it all seems rather primitive. Computers were in their infancy, and imaging was almost all traditional. However, I liked the X-ray departments that I saw, and was taught by Peter Bretland at the Whittington Hospital, and by the great George Simon who was a pioneer chest radiologist. Both were inspirational teachers.

OLYMPUS DIGITAL CAMERA

Old X-ray cassette, pre-digital

The juniors today will find it difficult to understand how very different things were. As a junior doctor, practising emergency medicine or surgery with only minimal imaging was not easy. Many assumptions were made. So for example, an older person with left iliac fossa pain and fever was assumed to have acute diverticulitis. They were treated with intravenous fluids, antibiotics and a nasogastric tube; a barium enema was then arranged as an outpatient. Many exploratory laparotomies were performed for undiagnosed acute symptoms, and the surgeon had only a limited idea as to what would be found. We had plain films, contrast studies and nuclear medicine, but no CT and only limited access to ultrasound. I can remember patients who would have been managed entirely differently today with modern imaging. In particular, an accurate diagnosis made by CT or ultrasound may preclude the need for invasive surgery.

5 Store for conventional film packets

Store for conventional film packets. Large storage rooms were needed for storing X-ray film packets, with many filing clerks

I was a surgical houseman in 1978-9, and I recollect one particular patient that had done something that you should never do, that is to polish the floor  underneath a carpet. He had come downstairs, and had stepped onto the carpet. The carpet had slid forwards, and he fell backwards hitting himself hard on the occiput. He presented with a severe headache, but no neurological signs. His skull plain film X-ray showed no fracture, and I admitted him for neurological observations. After 24 hours he remained well, but still had his severe headache. The surgical team decided to keep him in  hospital for further observation. We kept him for well over a week, and he remained well although with a persistent headache. We then finally sent him home. I had a phone call some days later from another hospital. My patient had unfortunately died, and the other team wanted to know what we had been doing. I explained what had happened, and the voice on the ‘phone said that this was all very reasonable and we could not be criticised. Today the patient would have been scanned, a potentially treatable lesion could have been found, and this young man could be alive today.

3 Traditional cassette opened to show intensifying screens and film

Traditional cassette opened to show intensifying screens and film

I had first seen the EMI/CT scanner when my consultant took his firm of neurology students to see the new scanner at the National Hospital in Queen Square, where he had clinical sessions. I was fascinated by the images we saw, and the radiologist Ivan Moseley showed us the capability of the scanner. I could feel the excitement in the air, and a knowledge as to how much we could learn about the natural history of various diseases. I was also aware of the excitement in the air when I was at Hammersmith Hospital as a registrar  in Radiology. We were being taught tradition imaging – plain films, barium meals and enemas, and IVPs. I became quite good at TLAs (trans-lumbar aortograms), when a long needle was passed into the prone anaesthetised patient, and contrast injected to show the peripheral vessels. However, whilst I was learning the traditional techniques, Graeme Bydder, from the MRI Unit, used to join us for our lunchtime meetings and show us the recent scans hot off the printer. This was long before the days of digital transfer of images and PACS. I remember being excited by the images of NMR as it was called then, and realising how the neurosciences would be revolutionised.

OLYMPUS DIGITAL CAMERA

Bags of films for reporting. Once a common scene in reporting rooms

Imaging has utterly transformed both the practice of medicine, and also how we look at ourselves. It is all too easy to be cynical about the modern world and whist things may always improve major advances have been made. However, all of these changes were quite unpredictable when the NHS was set up, and it is a major achievement that these new imaging techniques have been introduced. Modern imaging is readily available for our patients, and has transformed untold numbers of lives. Godfrey Hounsfield was always very humbled by the many letters that he received from patients and relatives thanking him for his invention.


About Dr Adrian Thomas

Adrian Thomas is a radiologist, and visiting professor at Canterbury Christ Church University. He has been President of the Radiology Section of the Royal Society of Medicine, and of the British Society for the History of Medicine. He is the Honorary Historian to the British Institute of Radiology. Adrian has written extensively on the history of radiology writing many papers, books and articles. He is currently, with a colleague, writing a biography of the first woman radiologist and woman hospital physicist.  He has had a long-term interest in role development in radiography, and teaches postgraduate radiographers.