Breaking the mould – how  radiographer reporting is better for the patient.

nigel-thomas

Professor Nigel Thomas from the University of Salford explains why allowing a radiographer to report X-rays  is not threat to the radiology profession.

 

 

 

I’ll nail my colours to the mast straight away, and state that I have been an active proponent of radiographer role extension in general, and radiographer reporting in particular, for over 20 years.

I first became involved in mid 1995 when the University of Salford (then University College Salford) asked for help in setting up a formal plain film reporting course for radiographers. The context for this was the unresolved tension between the large numbers of unreported films in most X-ray Departments and the realisation that radiographers as a group of professionals were often working below their full potential – a real untapped resource within our own departments. Becoming involved in the process seemed to me to be a very obvious thing to do, and I have never had any regrets about doing so. I don’t believe that I have contributed to the demise of my profession, and I certainly don’t feel like a “turkey voting for Christmas”.

Over the years since then, radiographers have increased the breadth of their involvement in reporting (to currently include some types of MR scanning and CT, as well as gastro-intestinal contrast studies amongst other things), as well as developing a career structure which encompasses working at Advanced Practitioner and Consultant Radiographer levels (the latter being a particular success in the world of breast imaging, where consultant radiographers can follow an entire patient journey by being able to perform and report mammograms, perform and report breast ultrasound and perform guided biopsies, as well as having counselling skills).

It was clear from the beginning that there would be opposition to the idea of radiographer reporting, both from the radiology establishment, and, to a much lesser extent, from within the radiography profession itself. In order to ensure that the process of creating reporting radiographers was as good as it could be, certain quality measures were put into place. No radiographer can report in the UK without a recognised qualification (at PgC or Pgd level) gained from a higher education institution. In the context of the workplace, reporting is done within an agreed scheme of work (signed off by the employing Trust Board), and regular audit is undertaken.

In 2017 between 15 and 20% of all plain film examinations in the UK are reported by radiographers, and there are now over 50 people in consultant radiographer grades around the country. Reporting radiographers have been “part of the furniture” in X-ray departments for over 20 years, and generations of junior doctors, nurses and physiotherapists have been familiar with using them as a port of call for advice on the interpretation of images.

And yet, despite all of the above, resistance to radiographer reporting persists. I find this particularly perplexing for several reasons:

  1. The reporting shortfall still persists, and patients are being put at risk by our failure to report their examinations in a timely and accurate way – would we rather leave them unreported?
  2. Radiologists have more than enough to do – there are too few of us, and our time is used to apply our unique skill set to report labour intensive complex examinations, undertake time-consuming interventional procedures, and provide a commitment to the support of MDTs.
  3. There is a substantial body of sound scientific evidence (published in the major UK peer-reviewed radiological journals) that radiographer reporting works, is safe, and is of a comparable standard to that provided by medical staff in many areas.
  4. Radiologists have been involved in this process from day 1 – advising on course content, giving lectures, acting as examiners and external examiners, and, most importantly, acting as mentors to radiographers in training at their places of work.

The final irony for me, as we progress into the 21st century is that, despite all the above, it is clear that some of my colleagues are much keener to gain help from computers than humans. Don’t get me wrong, I’m sure that Computer Aided Design (CAD) and Artificial Intelligence (AI)  will have a huge role to play in the routine provision of a radiology service in the near future, but reporting radiographers can help patients here and now.

References

Berman L, de Lacey G, Twomey E, Twomey B, Welch, T and Eban, R. ‘Reducing errors in the accident department: a simple method using radiographers’, British Medical Journal 1985; 290: 421-2

Loughran,C.F., Reporting of fracture radiographs by radiographers: the impact of a training programme. British Journal of Radiology, 67(802), 945 –950, 1994

Judith Kelly, Peter Hogg, Suzanne Henwood. The role of a consultant breast radiographer: A description and a reflection. Radiography, Volume 14, Supplement 1, e2-e10, 2008.

Brealey, S., Hewitt, C., Scally, A., Hahn, S., Godfrey, C., and Thomas, N.B. Bivariate meta-analysis of sensitivity and specificity of radiographers’ plain radiograph reporting in clinical practice. British Journal of Radiology, 82, (979), 600-604, 2009.

Piper, K., Buscall, K., Thomas, N.B., MRI reporting by radiographers: Findings of an accredited postgraduate programme. Radiography, Volume 16, Issue 2, 136-142, May 2010

  1. Piper, S. Cox, A. Paterson, A. Thomas, N.B. Thomas, N. Jeyagopal, N. Woznitza. Chest reporting by radiographers: Findings of an accredited postgraduate programme, Radiography, Volume 20, Issue 2, 94-99, February 2014
  1. Snaith, M. Hardy, E.F. Lewis Radiographer reporting in the UK: A longitudinal analysis

Radiography, Volume 21, Issue 2, 119-123, 2015

About Nigel Thomas

Born and raised in Cornwall, I qualified from St Bartholomew’s Hospital in London in 1981 having gained an intercalated B.Sc in Biochemistry in 1978.

My radiology training was undertaken on the North Western Training Scheme (based in Manchester), and I was appointed as Consultant Radiologist to North Manchester General Hospital in 1989.In 2005 I moved to a Consultant post at Trafford General Hospital and retired as a full-time NHS Consultant Radiologist in 2015.

I currently work as an independent Consultant Radiologist and, amongst other roles, am a mentor to Reporting Radiographers at two large Foundation Trusts in the Manchester conurbation.

I first became involved in the process of radiographer role development at the University of Salford in 1995, and was appointed as an Honorary Professor there in 2000. I have over 40 publications in scientific journals, and am a co-author of a standard textbook of Obstetric and Gynaecological Ultrasound scanning.

 

Image: Courtesy of Nottingham University Hospitals

 

Top tips for honest science messages in the media

13-kate-elliottScience is often misrepresented in the media. The BIR supports the charity Sense about Science in their call for all research to be openly and honestly reported. This year we supported one of their Voice of Young Science workshops called “Standing up for Science” held on 16 September 2016 in London.

Here, Kate Elliott, Medical Physicist at  Mount Vernon Cancer Centre was one of three lucky BIR members to attend the workshop which gave young researchers top tips and advice on how to get their scientific messages across as clearly and accurately as possible.

 

I hate speaking in public and even the thought of writing this article terrified me. Why then, you might ask, did I apply to go on the Standing up for Science media workshop?

I often get annoyed at the coverage of science in the media and the misuse of statistics and results. Recently, the Brexit “debate” has left me ranting at friends, and I often find myself defending junior doctors on social media. When I received the email from BIR advertising the media workshop, it struck me as an opportunity to learn what I could do to positively influence the public perception of science, and to hear first-hand from journalists about their involvement.

The first session consisted of a panel of three scientists who told us of personal experiences with the press and offered advice based on this. An example which stood out to me as a healthcare scientist was Professor Stephen Keevil’s use of the media to highlight a problem with a new EU directive on physical agents[1], which could  have caused problems for MRI. Politicians took heed of his criticism, and effected a change to the directive in Brussels. This was a great example of how the media can be used effectively to influence policy – something that is likely to become increasingly important in the next few years.

The second session was a panel of three journalists, who explained their daily process for13-standing-up-for-science-workshop-sept-2016selecting and pitching stories. Science stories are selected based on interest, accessibility, and importance. These are pitched to the editors, who decide which ones to take further. The journalists pointed out that their duty is to their audience, not to science. Unfortunately, science has to compete with news on David Beckham’s haircut. Time constraints are also a problem. They write multiple articles a day (I’m three weeks and counting on this one…), so it’s important for scientists to be available to discuss their research on the day it’s published.

The third panel was about the nuts and bolts of how to interact with the media, and recommended campaigns such as Sense about Science’s “Ask for Evidence” campaign.

I left the event with the following advice to keep in mind:

  • If you disagree with something: speak out. If the public only hears one side of the story, that’s the side they’ll believe.
  • Stick to a few key points. Get those across, even if it means having to ignore questions or turn them around in an infuriatingly politician-like way!
  • Be available. If you’ve put out a press release, you need to be able to respond quickly. Journalists work to very stringent time scales, so being available in a week’s time is going to be too late.
  • Talk to the public. Attend events such as Pint of Science, or become a STEM ambassador, because that will really help you learn to speak in layman’s terms and get you used to answering obscure questions.
  • Get training. If not full media training, a workshop like this is a really good way to be slightly more prepared – and you get to hear about all the interesting science other people are involved in!

Image: BIR members  Jim Zhong, Kate Elliott and Maureen Obioha Agwanihu who attended the workshop

[1] https://www.myesr.org/html/img/pool/MRI-Report-Stephen-Keevil.pdf

Neuroimaging assessments in dementia

Vanessa Newman
Dr Vanessa Newman

Dementia is the leading cause of disability in people over 60 years old. Imaging is increasingly used to diagnose dementia to complement physical, cognitive and mental examinations.

Here, Dr Vanessa Newman explores the role of imaging in detecting this cruel and debilitating illness that effects over one million people in the UK.

Dementia: a global burden

Dementia is a leading cause of disability in people aged >60 years, representing a significant burden on patients in terms of quality of life, disability and mortality associated with the condition. This further impacts caregivers, health services and society in general. According to the World Alzheimer Report 2015, it is estimated there are 46.8 million people living with dementia worldwide and this number is due to double every 20 years. Of the 9.2 million people with dementia in Europe over 1.03 million live in the UK, representing a considerable health economic burden. Furthermore, general improved life expectancy of the global population is anticipated to correspond with increased prevalence of dementia.[1,2]

The impact of dementia on informal caregivers – such as family members and friends – is substantial and can result in physical and mental illness, social isolation and poor quality of life for them. Although their participation in the care of dementia patients may alleviate burden on healthcare systems and residential care homes, informal caregiving is not without societal costs caused by absenteeism from work.[2]

Different forms of dementia

Dementia is a progressive illness that affects not only a person’s memory but also their behaviour, mood, cognition and ability to perform daily activities. Progression of dementia is associated with both genetic predisposition and lifestyle factors, including smoking, alcohol, exercise and diet. There are a number of different dementia subtypes with varying incidence in the population, including vascular dementia (VaD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Parkinson’s dementia (PD) and mixed dementia. However, Alzheimer’s disease (AD) is the most prevalent form, representing 62% of the dementia population.[3–6]

Diagnosing dementia

Although the majority of patients are diagnosed with dementia in later life, evidence shows that irreversible, pathological changes within the brain occur long before the onset of clinical symptoms. Gradual changes within the brain lead to progressive cognitive impairment and patients often experience a transitional period of mild cognitive impairment (MCI), during which a differential diagnosis may not be possible.[3,7–10]

Formal assessment of cognitive decline, as undertaken by dementia experts, usually includes physical, cognitive and mental examinations [e.g. the Mini Mental State Examination (MMSE)], plus a review of education and functional levels, medications and health history.[4,11]

Dementia assessment using brain biomarkers and structural imaging

There are several protein deposition biomarkers that may be used to assist in a diagnosis of dementing diseases, such as the presence of TDP-43 (FTD), Lewy bodies (DLB), alpha-synuclein (Parkinson’s disease), plus tau and β-amyloid which are typical in the pathogenesis of Alzheimer’s disease (although not exclusive to this dementia subtype).[12,13] Historically, reliable diagnoses might only be made post-mortem using histopathology. However, increasingly the imaging of biomarkers or their effect on the living brain can be made earlier on in the course of disease, before evidence of memory impairment is seen.[12,13]

Piramal blog image 1

Fig 1. Source: Jovalekic et al. EJNMMI Radiopharmacy and Chemistry (2017) 1:11. doi:10.1186/s41181-016-0015-3 (Copyright held by Piramal Lifesciences).

Cerebrospinal fluid (CSF) sampling via lumbar puncture can help detect abnormal levels of soluble β‑amyloid42, total tau (T-tau) and phosphorylated tau (p-tau181), which may assist during the diagnostic workup of dementia patients being assessed for AD.[14] However, lumbar puncture is an invasive method and some patients may refuse the procedure or are contraindicated, for example, if they receive anticoagulant medications. In addition, CSF-based analyses show variability between immunoassay platforms and biomarker concentrations, which may present challenges to clinicians.[14–17]

Brain imaging in patients can assist a clinical diagnosis by examining presence of cerebral pathologies and structural changes, including MRI and CT that can detect subcortical vascular changes. Single-photon emission CT (SPECT) measuring perfusion can help differentiate AD, VaD and FTD,[4,11] while 2-(18F)Fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) may assist in detecting impaired neuronal activity by measuring the cerebral metabolic rate of glucose. This has been used to detect abnormal patterns in the brain and the potential to predict conversion from MCI to AD or the diagnosis of AD has been demonstrated.[8,9,18–20] Both SPECT-perfusion imaging and FDG-PET are indirect measures of disease that detect characteristic changes in glucose and oxygen metabolism. However, these imaging modalities show limitations in reflecting the aetiology of prodromal or mild AD.[8,9,11,19,20]

Brain β-amyloid (Aβ) deposition and plaque formation occurs early in the pathogenesis of AD, therefore offering the potential to assist in an early clinical diagnosis of patients being evaluated for Alzheimer’s dementia and other forms of cognitive impairment. Amyloid-PET is a relatively recent imaging modality and three 18F-labelled imaging agents are licensed for use in the EU that can detect the presence of β-amyloid neuritic plaques in the living brain, with validated visual assessment methods using histopathology as the standard of truth (Fig.2).[13,21] According to published appropriate use criteria, amyloid-PET is considered to have greatest utility in a subset of dementia patients:[22–24]

  • where there is an established persistent or progressive unexplained memory impairment (unclear diagnosis); or
  • where brain Aβ is a diagnostic consideration based on core clinical criteria, and where knowledge of this pathology may alter patient management; or
  • with progressive dementia and atypical age of onset (usually <65 years of age).

Piramal blog image 2

Fig 2: 18F-labelled imaging agents have the ability to detect the presence of β-amyloid neuritic plaques in the living brain (immunohistochemistry with monoclonal 6E10 Aβ antibody).[13]

Fig. 2: Source: Jovalekic et al. EJNMMI Radiopharmacy and Chemistry (2017) 1:11. doi:10.1186/s41181-016-0015-3 (Copyright held by Piramal Lifesciences).

Amyloid-PET does not alone provide a diagnosis, rather it forms part of the greater assessment workup by clinical experts, including neurologists, psychiatrists and geriatricians. The knowledge of the presence or absence of β-amyloid plaques has been shown to support a confident differential diagnosis and a tailored patient care plan, including use of medications where appropriate. There is also added value for patients and their caregivers in knowing the cause of dementia, enabling decision-making and planning for the future including the possibility of enrolling into clinical trials.[5,6,8,22–28]

 The future of diagnostic imaging

The National Institute for Health and Care Excellence (NICE) is reviewing guidance on the organisation and delivery of diagnostic services, due for publication in August 2017. The scope of the revised guidance will encompass imaging in neurodegenerative diseases, as part of the wider radiology/nuclear medicine service in the NHS. This will affect not only patients, but all staff who use, refer and interpret diagnostic services in both primary, secondary and tertiary care.[29]

Author: Vanessa Newman (MD-V, PhD), Medical Affairs Director at Piramal Imaging Ltd

References

  1. Alzheimer-Europe, The prevalence of dementia in Europe. 2015, Alzheimer Europe: Luxembourg.
  2. Prince, M., World Alzheimer Report 2015: The Global Impact of Dementia – an analysis of prevalence, incidence, cost and trends, A.s.D.I. (ADI), Editor. 1015: London.
  3. Prince, M., World Alzheimer Report 2014: Dementia and Risk Reduction – an analysis of protective and modifyable factors, A.s.D. International, Editor. 2014, Alzheimer’s Disease International (ADI): London, UK.
  4. NICE, Clinical guideline 42: Dementia: Supporting people with dementia and their carers in health and social care. 2006, National Institute for Health and Care Excellence (NICE): London, UK.
  5. Deckers, K., et al., Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry, 2015. 30(3): p. 234-46.
  6. Kivipelto, M. and F. Mangialasche, Alzheimer disease: To what extent can Alzheimer disease be prevented? Nat Rev Neurol, 2014. 10(10): p. 552-3.
  7. Catafau, A.M. and Bullich, S., Amyloid PET imaging: applications beyond Alzheimer’s disease. Clin Transl Imaging, 2015. 3(1): p. 39-55.
  8. Sabri, O., et al., Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement, 2015. 11(8): p. 964-74.
  9. Sabri, O., et al., Beta-amyloid imaging with florbetaben. Clin Transl Imaging, 2015. 3(1): p. 13-26.
  10. Vos, S.J., et al., Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology, 2013. 80(12): p. 1124-32.
  11. Bloudek, L.M., et al., Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis, 2011. 26(4): p. 627-45.
  12. Sperling, R.A., Karlawish, J., and Johnson K.A., Preclinical Alzheimer disease-the challenges ahead. Nat Rev Neurol, 2013. 9(1): p. 54-8.
  13. Jovalekic, A., et al., New protein deposition tracers in the pipeline. EJNMMI Radiopharmacy and Chemistry, 2017. 1(1).
  14. Roe, C.M., et al., Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology, 2013. 80(19): p. 1784-91.
  15. Dubois, B., et al., Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 2014. 13(6): p. 614-629.
  16. Perret-Liaudet, A., et al., Risk of Alzheimer’s disease biological misdiagnosis linked to cerebrospinal collection tubes. J Alzheimers Dis, 2012. 31(1): p. 13-20.
  17. Kang, J.H., et al., Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease biomarkers. Clin Chem, 2013. 59(6): p. 903-16.
  18. Ng, S., et al., Visual Assessment Versus Quantitative Assessment of 11C-PIB PET and 18F-FDG PET for Detection of Alzheimer’s Disease. Journal of Nuclear Medicine, 2007. 48(4): p. 547-552.
  19. Perani, D., et al., A survey of FDG- and amyloid-PET imaging in dementia and GRADE analysis. Biomed Res Int, 2014. 2014: p. 785039.
  20. Piramal, NeuraCeq (florbetaben 18F) Summary of Product Characteristics. 2015, Piramal Imaging Ltd.
  21. EMA. Human Medicines: European public assessment reports. 2016 [cited 2016 July]; Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d124.
  22. Johnson, K.A., et al., Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement, 2013. 9(1): p. e-1-16.
  23. Johnson, K.A., et al., Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med, 2013. 54(7): p. 1011-3.
  24. Scarsbrook, A. and Barrington S., Evidence-based indications for the use of PET-CT in the United Kingdom 2016, R.C.o.P. Royal College of Radiologists, Editor. 2016, RCR, RCP: London, UK.
  25. Bang, J., Spina, S., and Miller, B.L., Frontotemporal dementia. The Lancet, 2015. 386(10004): p. 1672-1682.
  26. Kobylecki, C., et al., A Positron Emission Tomography Study of [18f]-Florbetapir in Alzheimer’s Disease and Frontotemporal Dementia. Journal of Neurology, Neurosurgery & Psychiatry, 2013. 84(11): p. e2-e2.
  27. Barthel, H., Seibyl, J., and Sabri O., The role of positron emission tomography imaging in understanding Alzheimer’s disease. Expert Rev Neurother, 2015. 15(4): p. 395-406.
  28. Pontecorvo, M.J., et al., A randomized, controlled, multicenter, international study of the impact of florbetapir (<sup>18</sup>F) PET amyloid imaging on patient management and outcome. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 11(7): p. P334.
  29. NICE. Dementia – assessment, management and support for people living with dementia and their carers: GUIDANCE. NICE Guidance 2016 [cited 2016 June]; Available from: https://www.nice.org.uk/guidance/indevelopment/gid-cgwave0792.

About Vanessa Newman

Vanessa’s background is in neurology (epilepsy and Down’s syndrome) and more recently in the field of neuroimaging in dementia. She has worked at Piramal Imaging since early 2015 and during this time has had the pleasure of seeing how quickly this area of medicine is moving, with increasing methods and imaging diagnostics available for use with people living with dementia.

Date of preparation: July 2016. ©Piramal Imaging Ltd. UK/FBB/1015/0021

Piramal Imaging Ltd, Langstone Technology Park, Langstone Road, Havant, Hampshire PO9 1SA, United Kingdom

Piramal Imaging Ltd medical information enquiries: Medicalaffairs.imaging@piramal.com
Piramal Imaging Ltd media enquiries: inquiries.imaging@piramal.com

Piramal is a British Institute of Radiology corporate member.

Piramal logo

Professionalism in healthcare

Anna van der GaagAnna van der Gaag, Chair, Health and Care Professions Council, explores the link between multidisciplinary teams and thriving professionalism.

The most recent British Social Attitudes Survey suggests that patient satisfaction with accident and emergency services is at a six-year low. Across professional health regulation, complaints are at an all time high. Many of these complaints are about behaviour, ethics and professional conduct. Why is this trend occurring and what can we do to address poor practice before it leads to a complaint?

It is likely that the increase in complaints and decrease in levels of satisfaction with services have multiple causes. The pressures on the system, resource issues and staff being asked to do more with less inevitably impact on the number of complaints. The growth of social media as a mechanism for comment, available 24 hours a day, internet sites like iWantGreatCare.org and Patient Opinion, which give people new opportunities to say what they think about their health professional or hospital service, are also contributing factors. We have seen a rise in complaints about breaches of confidentiality on social networking sites, and health professionals using social media as a mechanism for criticising colleagues. This type of online unprofessional behaviour is on the rise, as the lines between personal and professional lives become more blurred. Changing social norms and new ways of communicating are important influences on professionalism and how it plays out in everyday life.

The HCPC commissioned research to improve our understanding of this complex area. The first HCPC report suggests that ‘professionalism’ is seen not so much as a discrete competency but a situational judgement, a set of behaviours influenced by context, rather than a fixed characteristic. These behaviours are strongly influenced by the particular care group and peer group as well as the knowledge and skills of an individual.

The second phase of this work is ongoing, but its findings have led us to generate further debate about the centrality of ethics and conduct in day to day practice. For example, our work suggests that professionals find it more acceptable to discuss issues of competence than conduct with their peers. They find it difficult to challenge each other about how they talk to patients, whereas comments about technical aspects of competence are much more common. This depends very much upon the nature of relationships, and the level of trust and mutual respect which exists between individuals and within teams. Where there are high levels of trust and strong team working, professionalism thrives.

In his vision of the future, Don Berwick talks about the centrality of team based care where the hierarchies between professions have lost their edge, where people are genuinely respectful of each others skills and expertise and their primary aim is to work together for the good of the patient. In these environments, there is a constant search for new technologies to improve care and a respect for the patient as an equal partner in the process, with expertise, with insight, with knowledge that no professional can ever have.

Changing expectations, social norms and new technology will mean that more is demanded of us as health professionals wherever we work. We need more, not less, talk about professionalism and values in the 21st century. Radiological professionals, with their well established team-based models of care, can be leaders in these much needed conversations.

Anna van der Gaag, Chair, Health and Care Professions Council, UK

About HCPC

HCPC is a UK wide regulator of 320,000 professionals from 16 health and care professions, including radiographers and clinical scientists. Its role is to protect the public by setting and monitoring standards, quality assuring education programmes, and investigating complaints.

The 2014 Welbeck memorial lecture at UKRC in Manchester was given by Anna van der Gaag, Chair of the Health and Care Professions Council (HCPC).

Happy belated 65th birthday

Neil Mesher, Managing Director, Philips Healthcare

Neil Mesher

It is rare for a day to pass when the healthcare system in the UK is not in the media spotlight, and it’s not very often that good news sells newspapers. Indeed, as I write this blog, I notice that the “crisis” in A&E is back on the home page of the BBC, with fears over how prepared the system is for the onslaught of winter, while it’s still 30 °C outside!

 

1017632_10151463792547721_1128585289_n

Of course, it’s worth remembering that for every newspaper headline, millions of people are cared for and successfully treated by the health service in all its guises, each day.  However, as the NHS turned 65 last month we have to acknowledge that the system does have structural, long-term challenges. Those born in the years before the NHS, the over 65s, currently make up 17% of the population. In the next 50 years that percentage will rise to 27%, with the over 85s set to be the fastest growing part of the population. These statistics are in part a measure of the past success of the NHS, but an ageing demographic, living with multiple long-term conditions, will be a key factor in how its future is shaped.

1948-NHS-leafletThere are many debates in the public arena about how to address these challenges in the coming years. The quality, innovation, productivity and prevention (QIPP) agenda undoubtedly has a significant role to play as a framework for the NHS. The rapid adoption and spread of innovation, supporting better quality care and improvements in productivity are all objectives that the whole of the healthcare “industry” can sign up to. Putting the patient at the centre of this process, supported by appropriate technology and resources, will positively impact patient outcomes.

Radiology has a pivotal role here in delivering accurate and timely diagnosis, enabling clinicians and patients to make informed choices about the direction of treatment and care. There was a fascinating debate on the radio last week about the notion of “too much healthcare”, and it concerned a patient who had been successfully diagnosed and treated for cancer. However, the aggressive approach to his treatment had left him with a number of serious long-term issues which could have been avoided. I was left with a sense that better diagnosis and information could have led to a better patient outcome, and significantly reduced the initial and ongoing treatment costs.

As a manufacturer and provider of healthcare services, at Philips we are working to understand how the QIPP agenda is being implemented at local levels, so that we can deliver tailored solutions. By combining the capabilities of the NHS with the technical expertise and infrastructure of a large multinational company, we believe that we can achieve more together. We are on a quest to develop more innovative solutions that will enable you to collaborate freely, diagnose more confidently and provide care passionately.

Here’s to the next 65 years!

Neil Mesher, Managing Director, Philips Healthcare

Diagnostic Imaging and Patient Choice

Peter Harrison 120 x 100

Peter Harrison

In the first of our guest blogs, Peter Harrison, Managing Director of Siemens Healthcare Sector, talks about how patient choice is driving a requirement for transparency of clinical performance.

The prevalence of internet usage has had a profound impact on patients’ engagement with their own health. Ask any GP and they will tell you stories of patients presenting to them with a confident (often inaccurate) self diagnosis of their conditions based upon internet research. While I am sure that this can frequently be unhelpful, surely the net impact of patients taking more interest in their health must be celebrated?

The internet has empowered consumers. Parents can now easily check Ofsted reports to establish the highest performing schools, and consumer guides before making purchasing decisions. The writing is on the wall—patients and carers will increasingly (and appropriately) position themselves as healthcare consumers and will demand the information to make informed choices on healthcare provision. GPs will provide counsel, but increasingly, patients and carers will also seek direct access to information. We are already starting to see greater transparency of clinical performance at a surgeon level. A good example can be found at the Society for Cardiothoracic Surgery website (http://www.scts.org), where risk-adjusted mortality rates can be viewed down to discrete surgeons, set against a scatter graph plot of their contemporaries.

I anticipate that a similar trend will apply to diagnostic imaging. Consumer demand will drive increased transparency of performance and a range of measures to enable patients and carers to make more informed decisions when exercising choice of provider. Those measures will likely extend to facets of modality performance that support accurate diagnosis (such as spatial and temporal resolution), but I also expect patients to be take a greater interest in wider facets of the imaging experience, such as safety and comfort. When considering modalities that utilise ionising radiation, patients may well want to understand what dose they are likely to receive during a scan. Not unreasonable, but there will also be a responsibility to help patients understand that the radiology team will need to appropriately balance minimisation of dose with the diagnostic quality to ensure appropriate specificity and sensitivity. Perhaps patients will want to establish what dose-reducing technologies are available within the imaging department and the extent to which the technologies are appropriately deployed?

Beyond traditional clinical quality and safety, issues of accessibility will also be of interest, with respect to both waiting times and bariatric considerations. What kind of experience might they expect with regards to patient care and comfort?

As the NHS adopts greater plurality of service provision and extends choice of provider to patients, successful imaging service providers will seek to differentiate themselves by affording due consideration to equipment selection and standards of service. I expect that those who are sensitive to these dynamics will be those who thrive and deliver a sustainable service, dependent upon both clinical referral and patient choice.

Peter Harrison is Managing Director, Siemens Healthcare sector, UK