Review – The Unofficial Guide to Radiology: 100 Practice Chest X-Rays with Full Colour Annotations and Full X-Ray Reports

Tom Campion

The Unofficial Guide to Radiology won the BIR/Philips

Trainee award for Excellence in 2015.   Tom Campion, radiology trainee at Bart’s Hospital, London and Valandis Kostas, Senior Radiographer from Guy’s and St Thomas’ Hospital  reflect on the latest addition to the series which focuses on chest x-ray interpretation and is designed to support professionals and students.

Valandis KostasA follow-up to the Unofficial Guide to Radiology, and part of the Unofficial Guide to Medicine series, this new book The Unofficial Guide to Radiology: 100 Practice Chest X-rays, with full colour annotations and full X-ray reports  has at its heart the inspiring idea that the development of educational resources should be driven by those who use them. The result is a fantastic resource for reporting radiographers, medical students, junior doctors in any specialty, providing a comprehensive and practical approach to chest x-ray interpretation.

41Vnk61P4sL._SX352_BO1,204,203,200_Right from the start, the book’s cover is self-explanatory and is easily perceived to be about chest X-ray interpretations.   The 100 chest X-ray cases are presented in a test-yourself format, with the images and case history presented on one page and the interpretation and report on the next.

The cases are separated in three coloured divisions: Standard (orange), Intermediate (purple) and Advanced (blue). The first page provides the reader with a short clinical indication followed by the associated chest X-ray in high quality, all in one page. The second page then evaluates the technical features, again using a colour code scheme which is then diagrammatically presented on the same chest X-ray, but on a smaller scale. It may be coincidence that the orange, purple and blue technical features can also be perceived as standard, intermediate and advanced technical points to look out for from a radiographer’s perspective. Finally, there is a short but precise summary demonstrating a report of the chest X-ray followed by further management for the patient.

The image quality is excellent in comparison to most other available textbooks, with crisp full-page images allowing the detail of the images to be explored – crucial in the days of PACS when every possible abnormality can be magnified a hundredfold.

Each ‘answer’ page has a consistent format, embedding a sensible interpretation pathway, and a clear layout highlighting both normal and abnormal findings. The consistency, and the detailed and comprehensive annotations, allows the reader to build up an idea of ‘normal’ over the course of the cases, continuously reinforcing important structures to check on every radiograph.

The multidisciplinary approach to development also comes through strongly, with suggested first management steps in response to each radiograph placing the interpretation firmly in the pragmatic clinical world. However, the ‘reporting’ style employed also develops familiarity with the language of radiologists; if this can sometimes seems overly formal or formulaic, it serves a purpose in ensuring that clinicians and radiologists are on the same page.

The clinical cases provided are realistic and are what you expect to find whether in Accident and Emergency and/or outpatient, GP clinics. From pathologies to pneumothoraxes, fractures to line insertions, most scenarios are covered in this book.

Valandis Kostas strongly recommends this book to all grade and advanced radiographers. He observes that the book provides the patient pathway link from clinical presentation to radiology, to treatment and type of follow up imaging required i.e. CT and/or chest clinic referral. The layout enables understanding of the acquired chest x-ray, vital for best practice.

He particularly applauded the section on quality of the chest X-ray, using the similar 10 point image quality check radiographers use in their clearance of X-rays they undertake. Patient I.D, rotation, penetration and inspiration are a few examples. Furthermore, the case layout educates radiographers the importance of these checks to aid image interpretation for diagnosis whilst encouraging learning about chest pathologies. This will eliminate the repetitious perception of the chest X-ray and it will encourage radiographers to maintain high quality chest radiographs for accurate diagnosis and reduce false negatives and false positives.

The clinical details provided in the case vignettes are of a level of detail that surpasses most of those seen in clinical practice; hopefully, the detail provided here will also serve to demonstrate to clinicians who read the book how fundamental these details are, and serve as a resource on helpful requesting as well as interpretation of chest radiographs.

An important area for radiographers and radiologists that is not covered in as much detail is the inadequate chest x-ray, and perhaps the book could be improved by including a few examples of misses/near misses from poor quality radiographs in order to educate readers on when a repeat X-ray is required.

Tom Campion, trainee radiologist  would happily recommend the book to anyone whose job involves X-ray reporting as it delivers a solid foundation in interpretation skills and serves  as both a thoughtfully structured introduction to the beginner and a handy reference to the more experienced.

Both Valandis and Tom felt that the book would make a great app or online tool  in the future.

The Unofficial Guide to Radiology £19.99

https://www.amazon.co.uk/Unofficial-Guide-Radiology-Practice-Annotations/dp/1910399019

Images: (Top left) Tom Campion, (top right) Valandis Kostas.

AUTHORS:

by Mohammed Rashid Akhtar MBBS BSc (Hons) FRCR (Author), Na’eem Ahmed MBBS BSc (Author), Nihad Khan MBBS BSc (Author)

EDITORS:

Mark Rodrigues MBChB(Hons) BSc(Hons) FRCR (Editor), Zeshan Qureshi BM BSc (Hons) MSc MRCPCH (Editor)

 

Advertisements

A Radiologist in the Planning Room

DrSimcock_400x400

Dr Richard Simcock

Historically, physicians have been both radiologist and radiation oncologist, and diagnostic and therapeutic roles have sat comfortably with one physician.

Dr Richard Simcock argues that times have now changed and there is a strong case for a radiologist AND a radiation oncologist in the planning room.

Thor Stenbeck is a hero of Swedish physics. Soon after Röntgen’s first X-ray image Stenbeck could lay claim to the first documented therapeutic use (locating a bullet lodged in a skull). Later he successfully irradiated skin cancer with the first documented fractionated therapy. Stenbeck is our first example of a physician becoming both a radiologist and radiation oncologist.

Dr Thor Stenbeck

Thor Stenbeck at work

The model has been endlessly repeated. Throughout the 20th century the therapeutic and diagnostic possibilities of the magical rays were supervised by key pioneers. One of Britain’s greatest examples was Ralston Patterson. Patterson trained in radiology in Cambridge, South Africa, Aberdeen and the Mayo Clinic before leading Manchester’s Holt Institute and trailblazing for standardisation in the medical physics of therapy.

Patterson

Ralston Patterson

Patterson was an early President of the Faculty of Radiologists, later transformed into the Royal College of Radiologists (motto, “From Rays, Health”). The Royal College still accredits both radiologists and radiation (clinical) oncologists—but the world has moved on.

Today’s radiotherapy maximises therapeutic ratio by using the best of radiological imaging to accurately identify a malignant target and the organs at risk (OARs). It then uses image guidance to ensure that the bullseye of the target never drifts from the treatment beam. As technology develops so does the ability to identify and potentially spare new OARs. At the recent BIR Meeting on “Diagnostic Radiology for Advanced Head and Neck Planning” delegates heard data on “new” OARS such as cochleas and carotids as well as reviewing how to identify emerging OARs in the swallowing musculature on high-resolution CTs. The meeting buzzed with talk on MRI and PET fusion in the radiotherapy planning process as well as diffusion-weighted MRI and nuclear medicine in diagnosis.

These technologies are figuratively and literally decades apart from the images Patterson used to guide treatment and yet we cling to one relic from the age: the dual role of radiation oncologist as radiologist. This is a nonsense.

The interpretation of imaging should be performed by those most expert, and in almost every case that will be the experienced cancer radiologist. Despite this it is usually the radiation oncologist who defines the visible tumour target ( or gross tumour volume (GTV)) in radiation planning. One assumes therefore that the radiation oncologist is trained in radiology? Sadly not.

It is an embarrassing fact that the post-graduate training of the UK clinical oncologist (as specified by the RCR curriculum ) requires no training or examination in radiological anatomy nor radiology. There are examinations in statistics and cancer biology but no expectation that trainees should be formally taught how to use the imaging that they use as the eyesight of their weapon of choice. Clinical oncology trainees may however be examined in the design of a radiotherapy bunker—a fitting metaphor for this silo thinking.

Elsewhere in the world the situation is not much better. Neither the US nor Australian training schemes mandate any radiology training (although the Royal Australian and New Zealand College of Radiologists (RANZCR) are considering it). In Canada at least a 4-month radiology attachment is expected (a model followed by some UK centres e.g. Glasgow) but this is not long enough to learn a radiologist’s craft. A recent study identified 84 radiological competencies as a minimum for radiation oncologists. We need to change the model; not “Jacks of all trades” but Masters of one.

We must bring together radiological knowledge and harness it to an oncologist’s expertise. Radiologists remain essential in diagnosis, staging and response assessment. Radiation oncologists determine clinical target volumes and critically assess the final plan. The two come together to identify tumour targets and OARs; radiologist and radiation oncologist in the same room but not the same person.

The BIR meeting showed us how far we have come (and can go) in head and neck radiotherapy.

Delegates at the BIR Head and Neck event, November 2014

Delegates at the BIR Head and Neck event, November 2014

It illustrated that progress will reach its maximum potential if we collaborate as a multiprofessional team in the planning department.

Thor Stenbeck was a hero, but a century later we should not emulate him and his dual roles.

 

Find out more about BIR events

About Dr Richard Simcock MRCPI FRCR

Dr Richard Simcock has been a Consultant Clinical Oncologist at the Sussex Cancer Centre since 2004. Previously he had worked at the Sydney Cancer Centre, Australia and before that had completed five years of postgraduate specialist training in Oncology in London and the South East including Guys and St.Thomas’, Charing Cross and Mount Vernon Hospitals. He graduated from Guys and St.Thomas’ hospital in 1993.

Working closely with the surgical and nursing team Dr Simcock sees and treats patients diagnosed with early or advanced breast cancer. He advises on the role of radiation, chemotherapy, hormone, biological, and experimental treatments.
Dr Simcock prescribes and supervises courses of chemotherapy delivered by the team at the Montefiore or by home healthcare teams. In addition he prescribes, plans, and supervises radiotherapy treatment at the Royal Sussex County Hospital or at Spire Portsmouth (CPUK).

He is also involved in enrolling patients in trials of new therapies as well as trials of improved radiation therapies.

As a Head and Neck Oncologist Dr Simcock treats cancers of the larynx (voice box), tongue, tonsil and other rarer sites. He supervises, prescribes and plans curative treatments with radiotherapy and chemotherapy as well as giving post-operative radiotherapy treatments. Intensity Modulated radiotherapy is used as standard in these cases.

A look back…and forward

Charlie McCaffrey 7Charlie McCaffrey, from Carestream Health reviews the world of medical imaging in 2013 and takes a peek of what lies ahead in the new year.

The dawning of a new year provides an opportunity to look back and reflect on the previous year. Surveying the diagnostic and therapeutic imaging landscape in the UK, 2013 was an interesting year. The publication of the Francis Report in February was a pivotal moment that will have long lasting consequences for the NHS. February also saw the official opening of the BIR’s new premises in St John Street and I was privileged to be in attendance at the opening ceremony and attend my last Council meeting as a Trustee there in September.

Liverpool hosted the UKRC in June for the first time and the event was a huge success.

In August, the government announced a commitment to establish two proton beam therapy centres by 2018: an exiting development for UK cancer treatment and the imaging community as a whole. August also saw the publishing by the DoH of “Better Procurement, Better Value, Better Care: A Procurement Development Programme for the NHS” which aims to build a modern, effective and efficient procurement capability in the NHS that is among the best in the world.

On the business front, we saw unprecedented activity in the RIS, PACS and Vendor Neutral Archiving space, with what can be described as a tsunami of implementation activity in the first half of the year as many NHS Trusts in the southern cluster and the North West and West Midlands cluster of the Connecting for Health Programme opted to exit the Programme and procure, implement and manage their own IT solutions.

Despite the establishment of the DoH Capital Equipment Fund, purchases of high-end imaging modalities by the NHS continued to be depressed with CT scanners, MRI units and general X-Ray room all failing to recover, a point highlighted elsewhere by my fellow industry bloggers. This will continue to be a challenge for the NHS with an ageing installed base and is a source of frustration given the significant savings being generated through the closing of the Connecting for Health Programme. It is imperative that these savings are channeled into investment in innovation to enable patients and staff to benefit from the faster throughput, lower patient exposure and lower total cost of ownership offered by new imaging modalities.

Looking forward to 2014, the NHS will continue to be a challenging environment in which to work and operate. The move to 7-day working will continue to accelerate against a continually challenging economic environment. More NHS Trusts are expected to exit the Connecting for Health Programme. On the technology front, imaging modalities will become more compact, efficient and faster, have higher throughput and lower dose and be more flexible. Healthcare IT solutions will become more portable, feature-rich and integrated. And on the political front there is the not insignificant matter of the Scottish referendum on independence in September, something, as a native Glaswegian, I will watch with much interest!

In closing, I would like to take this opportunity to wish the BIR continued success for the future and wish you a Happy New Year.
Charles McCaffrey, Cluster Manager – North Europe and Managing Director UK & Ireland, Carestream Health.

Carestream

(Charlie is also Chair of AXrEM—the Trade Association of Healthcare Technology Providers for Imaging, Radiotherapy and Care)

How imaging technology can help tackle the funding challenge facing healthcare

Karl Blight high resKarl Blight, UK and Ireland General Manager at GE Healthcare considers how imaging technology can help tackle the funding challenge facing healthcare

NHS England’s recent strategy paper, ‘A Call to Action’ [1] Identified a potential £30 billion funding gap between spending and resources by 2020-21 if services continue to be delivered as they are now. This challenge will require significant changes in how healthcare is provided so that productivity can be improved and costs reduced.

While much attention will be paid to structural changes around how the NHS is organised, and to where and how patients access healthcare and are treated, funding decision makers need to recognise that investment in appropriate technology can make a major contribution to improving the efficiency of the healthcare system. There is a general misconception that the up-front cost of healthcare technology is prohibitive and, at a time of economic austerity, should be amongst the first areas to be constrained. But, this can be a false economy. Persisting with older technology can lead to higher maintenance costs, disrupted patient appointments due to increased downtime and slower scans, while newer equipment can increase productivity with higher uptimes and better quality images that enable more confident diagnoses and make repeat scans less likely.

Meanwhile, some newer scanners feature state-of-the-art technology that can help save time for clinicians and reduce the burden of paperwork, for example connecting to field engineers who help solve issues remotely so that clinicians can focus on providing patient care. In addition, many medical device manufacturers are investing in the development of new products which have been engineered to meet specific needs at a lower price point. Many are specifically designed to be portable and efficient to operate for the user. Not all situations require the high end technology, and manufacturers are providing equipment that can be tailored to the particular needs of the user or service.

Revolutionary developments in medical technology encompass not only the physical kit. The rise of digitisation, particularly in imaging and in data analysis, transfer and management, is good for the patient and also has huge potential to boost productivity. The combination of big data analytics and clinical information is helping healthcare professionals to identify issues, design solutions and implement patient and system level changes much faster than previously possible. There is a vast reserve of data in healthcare and we are only at the beginning of making the most of it.

The medical device industry, by investing in the development of new technologies, is playing an important role in helping practitioners to deliver better, more cost effective care to patients. Clinicians and technology providers alike now need to ensure that UK healthcare budget holders don’t just focus on the perceived costs associated with new equipment, and instead understand and recognise the value, productivity potential and long term benefits that investing in appropriate technology can bring, both to improving patient care, and to helping the NHS meet its funding gap.

[1] http://www.england.nhs.uk/2013/07/11/call-to-action/