Radiotherapy: 40 years from tracing paper to tomotherapy

NHS

Physicist Andy Moloney and Clinical Oncologist David Morgan reflect on how radiotherapy developed since their early careers

 

We first met in the autumn of 1981, when the NHS was, at 33 years from its inception, but a youngster. Andy had recently joined the Radiotherapy Physics staff at Nottingham General Hospital after graduating in Physics from the University of Nottingham, and David was returning to the clinical Department of Radiotherapy and Oncology after a year’s Fellowship at the Institut Gustave-Roussy in France. A firm friendship rapidly developed, one that continues to this day.

On reflection, joining the radiotherapy fraternity at that time was a leap of faith. The perceived wisdom amongst many of our scientific and clinical colleagues at the time was that this treatment technique was outdated and overshadowed by radical surgical procedures, new chemotherapy agents and biological modifiers poised to reduce radiotherapy to the history books.

picture 063This was a time when, in this Cinderella of specialties, physics planning was achieved by the superposition of two dimensional radiation plots (isodoses) ,using tracing paper and pencils, to produce summated maps of the distribution. The crude patient outlines were derived from laborious isocentric distance measurements augmented by the essential “flexicurve”. The whole planning process was slow and labour intensive fraught with errors and ridiculed by colleagues in the perceived prestigious scientific and clinical disciplines. The principal platform for external beam radiotherapy delivery, the Linear Accelerator (LinAc), had also reached something of a plateau of development, albeit with improved reliability, but few fundamental changes. Caesium tubes were transported from the “radium safe”, locked in an underground vault, to the operating theatre in a lead-lined trolley, where they were only loaded into “central tubes” and “ovoids” after the examination under anaesthetic (which was performed with the patient in the knee-chest position); they were then manually placed into the patient, who went to be nursed on an open ward, albeit behind strategically placed lead barriers.

For no sites outside the cranium was Computer Tomography (CT) scanning available. Magnetic Resonance Imaging (MRI) was still a vision seen only by a small number of enthusiasts.

All these limitations were met by a developing team of scientific and clinical enthusiasts believing in the future of radiotherapy if only technology could deliver solutions to address an improving understanding of the differing cancers and their radiobiology.

picture 066In the latter half of the eighties these solutions began to crystallise. Computers were being introduced across the NHS and their impact was not lost in radiotherapy. Pads of tracing paper were replaced with the first generation of planning computers. The simple “Bentley-Milan” algorithms could account for patient outlines accurately and speedily and optimising different beam configurations became practical. Consideration of Organs at Risk, as defined by the various International Commission on Radiation Units (ICRU) publications, became increasingly relevant. Recognition of the importance of delineating the target volumes and protecting normal tissue required improved imaging and this was provided by the new generation of CT scanners. In the nineties these were shared facilities with diagnostic radiology departments. However, the improvements provided by this imaging, enabling accurate 3-dimensional mapping of the disease with adjacent normal tissues and organs at risk, dictated their inclusion into every radiotherapy department soon after the millennium. The added bonus of using the grey scale pixel information, or Hounsfield numbers, to calculate accurate radiation transport distributions soon followed when the mathematical and computer technology caught up with the task. The value of MR and Positron Emission Tomography (PET) imaging was also recognised in the diagnosis, staging and planning of radiotherapy and the new century saw all of these new technologies embedded within the department.

Mould room technology was also improving with “instant” thermoplastic immobilisation shells replacing the uncomfortable plaster and vacuum forming methods. Custom shielding with low melting high density alloys was becoming routine and it was not long before these techniques were married with the emerging CT planning to provide “conformal” treatments.

picture 067LinAc technology also received added impetus. Computers were firstly coupled as a front end to conventional LinAcs as a safety interface to reduce the potential for “pilot error”. Their values were soon recognised by the manufacturers and were increasingly integrated into the machine, monitoring performance digitally and driving the new developments of Multi Leaf Collimators (MLC) and On Board Imaging (OBI).

The dominos for the radiotherapy renaissance were stacked up, but it needed the radiographers, clinicians and scientists to decide on the direction of travel. Computer power coupled with advanced electro-mechanical design had transformed MLC efficiency and resolution. Conventional conformal planning was now progressively superseded by sophisticated planning algorithms using merged CT and MR images. Intensity Modulated RadioTherapy (IMRT) had arrived in its evolving guises of multiple fixed field, dynamic arc therapy (RapidArc) or Tomotherapy. Whichever technique, they all offered the radiotherapy “Holy Grail” of providing three dimensional homogeneous dose distributions conformed to the Planning Target Volume (PTV) whilst achieving the required dose constraints for organs at risk and normal tissue preservation.

The tools had arrived, but an infrastructure to introduce these “toys” safely into a complex clinical background had also developed alongside. Quality standards (ISO9000), Clinical Trials, Multi Disciplinary Teams and Peer Review were governance mandates for all oncology departments and radiotherapy was leading the way. In forty years, radiotherapy had lost the “Cinderella” image and had been invited back to the clinical ball. Noticeably, breast and prostate adenocarcinoma constituted half of the radical workload.

The question remains of how and why did this transformation occur? Obviously the developing computer power and technology were the pre-requisites for many of the developments, but a key catalyst was the foresight of all of the radiotherapy family from which enduring friendships have been forged. The working lives of the clinicians and physicists involved in radiotherapy planning have probably changed more dramatically than those of any other medical and paramedical groups over the last 35 years.

We may have retired, but we still cogitate about the future direction and science behind this developing and essential cancer treatment and look forward to our younger colleagues enjoying their careers as much as we enjoyed ours.

 


About David Morgan

david morganDr David A L Morgan began training in Radiotherapy & Oncology as a Registrar in 1977, and in 1982 was appointed a Consultant in the specialty in Nottingham, continuing to work there until his retirement in 2011. He joined the BIR in 1980 and at times served as Chair of its Oncology Committee and a Member of Council. He was elected Fellow of the BIR in 2007. He is author or co-author of over 100 peer-reviewed papers on various aspects of Oncology and Radiobiology.

 

About Andrew Moloney

andy moloneyAndy Moloney completed his degree in Physics at Nottingham University in 1980 before joining the Medical Physics department at the Queens Medical Centre in the same city. After one year’s basic training in evoked potentials and nuclear medicine, he moved to the General Hospital in Nottingham to pursue a career in Radiotherapy Physics and achieved qualification in 1985. Subsequently, Andy moved to the new radiotherapy department at the City Hospital, Nottingham, where he progressed up the career ladder until his promotion as the new head of Radiotherapy Physics at the North Staffordshire Royal Infirmary in Stoke-on-Trent. Over the next twenty years Andy has acted as Clinical Director for the oncology department and served on the Radiation Physics and Oncology Committees at the BIR and was appointed a Fellow in 2007. He has been the author and co-author of multiple peer reviewed articles over the years prior to his retirement in 2017.

 

Advertisements

Breaking the mould – how  radiographer reporting is better for the patient.

nigel-thomas

Professor Nigel Thomas from the University of Salford explains why allowing a radiographer to report X-rays  is not threat to the radiology profession.

 

 

 

I’ll nail my colours to the mast straight away, and state that I have been an active proponent of radiographer role extension in general, and radiographer reporting in particular, for over 20 years.

I first became involved in mid 1995 when the University of Salford (then University College Salford) asked for help in setting up a formal plain film reporting course for radiographers. The context for this was the unresolved tension between the large numbers of unreported films in most X-ray Departments and the realisation that radiographers as a group of professionals were often working below their full potential – a real untapped resource within our own departments. Becoming involved in the process seemed to me to be a very obvious thing to do, and I have never had any regrets about doing so. I don’t believe that I have contributed to the demise of my profession, and I certainly don’t feel like a “turkey voting for Christmas”.

Over the years since then, radiographers have increased the breadth of their involvement in reporting (to currently include some types of MR scanning and CT, as well as gastro-intestinal contrast studies amongst other things), as well as developing a career structure which encompasses working at Advanced Practitioner and Consultant Radiographer levels (the latter being a particular success in the world of breast imaging, where consultant radiographers can follow an entire patient journey by being able to perform and report mammograms, perform and report breast ultrasound and perform guided biopsies, as well as having counselling skills).

It was clear from the beginning that there would be opposition to the idea of radiographer reporting, both from the radiology establishment, and, to a much lesser extent, from within the radiography profession itself. In order to ensure that the process of creating reporting radiographers was as good as it could be, certain quality measures were put into place. No radiographer can report in the UK without a recognised qualification (at PgC or Pgd level) gained from a higher education institution. In the context of the workplace, reporting is done within an agreed scheme of work (signed off by the employing Trust Board), and regular audit is undertaken.

In 2017 between 15 and 20% of all plain film examinations in the UK are reported by radiographers, and there are now over 50 people in consultant radiographer grades around the country. Reporting radiographers have been “part of the furniture” in X-ray departments for over 20 years, and generations of junior doctors, nurses and physiotherapists have been familiar with using them as a port of call for advice on the interpretation of images.

And yet, despite all of the above, resistance to radiographer reporting persists. I find this particularly perplexing for several reasons:

  1. The reporting shortfall still persists, and patients are being put at risk by our failure to report their examinations in a timely and accurate way – would we rather leave them unreported?
  2. Radiologists have more than enough to do – there are too few of us, and our time is used to apply our unique skill set to report labour intensive complex examinations, undertake time-consuming interventional procedures, and provide a commitment to the support of MDTs.
  3. There is a substantial body of sound scientific evidence (published in the major UK peer-reviewed radiological journals) that radiographer reporting works, is safe, and is of a comparable standard to that provided by medical staff in many areas.
  4. Radiologists have been involved in this process from day 1 – advising on course content, giving lectures, acting as examiners and external examiners, and, most importantly, acting as mentors to radiographers in training at their places of work.

The final irony for me, as we progress into the 21st century is that, despite all the above, it is clear that some of my colleagues are much keener to gain help from computers than humans. Don’t get me wrong, I’m sure that Computer Aided Design (CAD) and Artificial Intelligence (AI)  will have a huge role to play in the routine provision of a radiology service in the near future, but reporting radiographers can help patients here and now.

References

Berman L, de Lacey G, Twomey E, Twomey B, Welch, T and Eban, R. ‘Reducing errors in the accident department: a simple method using radiographers’, British Medical Journal 1985; 290: 421-2

Loughran,C.F., Reporting of fracture radiographs by radiographers: the impact of a training programme. British Journal of Radiology, 67(802), 945 –950, 1994

Judith Kelly, Peter Hogg, Suzanne Henwood. The role of a consultant breast radiographer: A description and a reflection. Radiography, Volume 14, Supplement 1, e2-e10, 2008.

Brealey, S., Hewitt, C., Scally, A., Hahn, S., Godfrey, C., and Thomas, N.B. Bivariate meta-analysis of sensitivity and specificity of radiographers’ plain radiograph reporting in clinical practice. British Journal of Radiology, 82, (979), 600-604, 2009.

Piper, K., Buscall, K., Thomas, N.B., MRI reporting by radiographers: Findings of an accredited postgraduate programme. Radiography, Volume 16, Issue 2, 136-142, May 2010

  1. Piper, S. Cox, A. Paterson, A. Thomas, N.B. Thomas, N. Jeyagopal, N. Woznitza. Chest reporting by radiographers: Findings of an accredited postgraduate programme, Radiography, Volume 20, Issue 2, 94-99, February 2014
  1. Snaith, M. Hardy, E.F. Lewis Radiographer reporting in the UK: A longitudinal analysis

Radiography, Volume 21, Issue 2, 119-123, 2015

About Nigel Thomas

Born and raised in Cornwall, I qualified from St Bartholomew’s Hospital in London in 1981 having gained an intercalated B.Sc in Biochemistry in 1978.

My radiology training was undertaken on the North Western Training Scheme (based in Manchester), and I was appointed as Consultant Radiologist to North Manchester General Hospital in 1989.In 2005 I moved to a Consultant post at Trafford General Hospital and retired as a full-time NHS Consultant Radiologist in 2015.

I currently work as an independent Consultant Radiologist and, amongst other roles, am a mentor to Reporting Radiographers at two large Foundation Trusts in the Manchester conurbation.

I first became involved in the process of radiographer role development at the University of Salford in 1995, and was appointed as an Honorary Professor there in 2000. I have over 40 publications in scientific journals, and am a co-author of a standard textbook of Obstetric and Gynaecological Ultrasound scanning.

 

Image: Courtesy of Nottingham University Hospitals

 

Top tips for honest science messages in the media

13-kate-elliottScience is often misrepresented in the media. The BIR supports the charity Sense about Science in their call for all research to be openly and honestly reported. This year we supported one of their Voice of Young Science workshops called “Standing up for Science” held on 16 September 2016 in London.

Here, Kate Elliott, Medical Physicist at  Mount Vernon Cancer Centre was one of three lucky BIR members to attend the workshop which gave young researchers top tips and advice on how to get their scientific messages across as clearly and accurately as possible.

 

I hate speaking in public and even the thought of writing this article terrified me. Why then, you might ask, did I apply to go on the Standing up for Science media workshop?

I often get annoyed at the coverage of science in the media and the misuse of statistics and results. Recently, the Brexit “debate” has left me ranting at friends, and I often find myself defending junior doctors on social media. When I received the email from BIR advertising the media workshop, it struck me as an opportunity to learn what I could do to positively influence the public perception of science, and to hear first-hand from journalists about their involvement.

The first session consisted of a panel of three scientists who told us of personal experiences with the press and offered advice based on this. An example which stood out to me as a healthcare scientist was Professor Stephen Keevil’s use of the media to highlight a problem with a new EU directive on physical agents[1], which could  have caused problems for MRI. Politicians took heed of his criticism, and effected a change to the directive in Brussels. This was a great example of how the media can be used effectively to influence policy – something that is likely to become increasingly important in the next few years.

The second session was a panel of three journalists, who explained their daily process for13-standing-up-for-science-workshop-sept-2016selecting and pitching stories. Science stories are selected based on interest, accessibility, and importance. These are pitched to the editors, who decide which ones to take further. The journalists pointed out that their duty is to their audience, not to science. Unfortunately, science has to compete with news on David Beckham’s haircut. Time constraints are also a problem. They write multiple articles a day (I’m three weeks and counting on this one…), so it’s important for scientists to be available to discuss their research on the day it’s published.

The third panel was about the nuts and bolts of how to interact with the media, and recommended campaigns such as Sense about Science’s “Ask for Evidence” campaign.

I left the event with the following advice to keep in mind:

  • If you disagree with something: speak out. If the public only hears one side of the story, that’s the side they’ll believe.
  • Stick to a few key points. Get those across, even if it means having to ignore questions or turn them around in an infuriatingly politician-like way!
  • Be available. If you’ve put out a press release, you need to be able to respond quickly. Journalists work to very stringent time scales, so being available in a week’s time is going to be too late.
  • Talk to the public. Attend events such as Pint of Science, or become a STEM ambassador, because that will really help you learn to speak in layman’s terms and get you used to answering obscure questions.
  • Get training. If not full media training, a workshop like this is a really good way to be slightly more prepared – and you get to hear about all the interesting science other people are involved in!

Image: BIR members  Jim Zhong, Kate Elliott and Maureen Obioha Agwanihu who attended the workshop

[1] https://www.myesr.org/html/img/pool/MRI-Report-Stephen-Keevil.pdf