My first day in radiotherapy physics: reflections of a medical physicist

NHSIn 2010 Karen Goldstone was awarded the MBE for her services to healthcare. Here she reflects on the primitive tools used for radiotherapy patient outlines back in the 1970s and remembers the wise advice she was given on her first day as a radiotherapy physicist.

BIR

I started work in the NHS as a Hospital Physicist in 1970. Prior to that I did the MSc in radiation Physics based at Middlesex Hospital. When doing a placement in nuclear medicine, computer tapes had to be taken to University College about a fifteen minute walk to the other side of Tottenham Court Road and fetched the next day hopefully having run successfully.

In my first post I expected to be doing mainly diagnostic radiology physics but discovered that that was rather a luxury field and so most of my time was spent doing radiotherapy physics. Those were the days when patient outlines were taken using a strip of lead or a flexicurve and planning was done using tracing paper and coloured pencils or biros. There was no computer planning of course and we only had one calculator with a paper roll print out so slide rules were in constant use. The main piece of advice I remember receiving on my first day was that if I discovered I had made a mistake I should own up to it straight away and not seek to cover it up – very wise words.

When not doing radiotherapy physics many hours were spent reading out film densities produced using our homemade “Ardran Cassette” in order to check kVp. This was the beginning of setting up a quality control programme for X-ray units. Another time-consuming activity was sealing lithium borate powder into plastic capsules in order to measure dose to radiologists, carrying out various procedures under fluoroscopic control, and subsequently reading the doses received.

Although diagnostic radiology physics was not seen as important it was an exciting time and I was fortunate enough to hear Godfrey Hounsfield give the 1972 MacRobert Award lecture on “Computerised Transverse Axial Tomography” – an invention that has revolutionised diagnostic imaging.

I started my second post in 1974 in a smaller department but with responsibilities in other, far-flung, hospitals. Here I was the radiotherapy physicist (the only one) and also covered diagnostic radiology and radiation protection, but because it was a smaller department and staff had to be versatile I also did some nuclear medicine and even once some ultrasound.

In the peripheral hospitals in my patch one was still using wet developing, one using just a fluorescent screen for fluoroscopic procedures and one an image intensifier viewed not via a camera but via a mirror arrangement.

How times have changed!


About Karen Goldstone MBE

I worked for forty years in the NHS, in radiotherapy physics, diagnostic X-ray physics and all aspects of radiation protection. In 1983 I set up the East Anglian Regional Radiation Protection Service (EARRPS) based at Addenbrooke’s Hospital in Cambridge, and ran it for almost 30 years. I was both a Radiation Protection Adviser and Laser Protection Adviser. I gave physics lectures to radiologists and was a physics examiner for FRCR both in the UK and Malaysia. With colleagues in EARRPS and Cambridge University I ran a number of Radiation Protection Supervisor courses and gave countless IRMER courses to reluctant clinical staff. I was exceedingly surprised to be awarded the MBE in 2010 for services to healthcare.

Since retiring I have taken up rowing and become a Level 2 rowing coach; I have given two courses on Radiation and Health to the University of the Third Age in Cambridge and am otherwise kept busy with my garden, allotment, grandchildren and church activities. I am still involved on one or two committees for medical physics and radiological protection.

Advertisements

Neuroimaging assessments in dementia

Vanessa Newman
Dr Vanessa Newman

Dementia is the leading cause of disability in people over 60 years old. Imaging is increasingly used to diagnose dementia to complement physical, cognitive and mental examinations.

Here, Dr Vanessa Newman explores the role of imaging in detecting this cruel and debilitating illness that effects over one million people in the UK.

Dementia: a global burden

Dementia is a leading cause of disability in people aged >60 years, representing a significant burden on patients in terms of quality of life, disability and mortality associated with the condition. This further impacts caregivers, health services and society in general. According to the World Alzheimer Report 2015, it is estimated there are 46.8 million people living with dementia worldwide and this number is due to double every 20 years. Of the 9.2 million people with dementia in Europe over 1.03 million live in the UK, representing a considerable health economic burden. Furthermore, general improved life expectancy of the global population is anticipated to correspond with increased prevalence of dementia.[1,2]

The impact of dementia on informal caregivers – such as family members and friends – is substantial and can result in physical and mental illness, social isolation and poor quality of life for them. Although their participation in the care of dementia patients may alleviate burden on healthcare systems and residential care homes, informal caregiving is not without societal costs caused by absenteeism from work.[2]

Different forms of dementia

Dementia is a progressive illness that affects not only a person’s memory but also their behaviour, mood, cognition and ability to perform daily activities. Progression of dementia is associated with both genetic predisposition and lifestyle factors, including smoking, alcohol, exercise and diet. There are a number of different dementia subtypes with varying incidence in the population, including vascular dementia (VaD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Parkinson’s dementia (PD) and mixed dementia. However, Alzheimer’s disease (AD) is the most prevalent form, representing 62% of the dementia population.[3–6]

Diagnosing dementia

Although the majority of patients are diagnosed with dementia in later life, evidence shows that irreversible, pathological changes within the brain occur long before the onset of clinical symptoms. Gradual changes within the brain lead to progressive cognitive impairment and patients often experience a transitional period of mild cognitive impairment (MCI), during which a differential diagnosis may not be possible.[3,7–10]

Formal assessment of cognitive decline, as undertaken by dementia experts, usually includes physical, cognitive and mental examinations [e.g. the Mini Mental State Examination (MMSE)], plus a review of education and functional levels, medications and health history.[4,11]

Dementia assessment using brain biomarkers and structural imaging

There are several protein deposition biomarkers that may be used to assist in a diagnosis of dementing diseases, such as the presence of TDP-43 (FTD), Lewy bodies (DLB), alpha-synuclein (Parkinson’s disease), plus tau and β-amyloid which are typical in the pathogenesis of Alzheimer’s disease (although not exclusive to this dementia subtype).[12,13] Historically, reliable diagnoses might only be made post-mortem using histopathology. However, increasingly the imaging of biomarkers or their effect on the living brain can be made earlier on in the course of disease, before evidence of memory impairment is seen.[12,13]

Piramal blog image 1

Fig 1. Source: Jovalekic et al. EJNMMI Radiopharmacy and Chemistry (2017) 1:11. doi:10.1186/s41181-016-0015-3 (Copyright held by Piramal Lifesciences).

Cerebrospinal fluid (CSF) sampling via lumbar puncture can help detect abnormal levels of soluble β‑amyloid42, total tau (T-tau) and phosphorylated tau (p-tau181), which may assist during the diagnostic workup of dementia patients being assessed for AD.[14] However, lumbar puncture is an invasive method and some patients may refuse the procedure or are contraindicated, for example, if they receive anticoagulant medications. In addition, CSF-based analyses show variability between immunoassay platforms and biomarker concentrations, which may present challenges to clinicians.[14–17]

Brain imaging in patients can assist a clinical diagnosis by examining presence of cerebral pathologies and structural changes, including MRI and CT that can detect subcortical vascular changes. Single-photon emission CT (SPECT) measuring perfusion can help differentiate AD, VaD and FTD,[4,11] while 2-(18F)Fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) may assist in detecting impaired neuronal activity by measuring the cerebral metabolic rate of glucose. This has been used to detect abnormal patterns in the brain and the potential to predict conversion from MCI to AD or the diagnosis of AD has been demonstrated.[8,9,18–20] Both SPECT-perfusion imaging and FDG-PET are indirect measures of disease that detect characteristic changes in glucose and oxygen metabolism. However, these imaging modalities show limitations in reflecting the aetiology of prodromal or mild AD.[8,9,11,19,20]

Brain β-amyloid (Aβ) deposition and plaque formation occurs early in the pathogenesis of AD, therefore offering the potential to assist in an early clinical diagnosis of patients being evaluated for Alzheimer’s dementia and other forms of cognitive impairment. Amyloid-PET is a relatively recent imaging modality and three 18F-labelled imaging agents are licensed for use in the EU that can detect the presence of β-amyloid neuritic plaques in the living brain, with validated visual assessment methods using histopathology as the standard of truth (Fig.2).[13,21] According to published appropriate use criteria, amyloid-PET is considered to have greatest utility in a subset of dementia patients:[22–24]

  • where there is an established persistent or progressive unexplained memory impairment (unclear diagnosis); or
  • where brain Aβ is a diagnostic consideration based on core clinical criteria, and where knowledge of this pathology may alter patient management; or
  • with progressive dementia and atypical age of onset (usually <65 years of age).

Piramal blog image 2

Fig 2: 18F-labelled imaging agents have the ability to detect the presence of β-amyloid neuritic plaques in the living brain (immunohistochemistry with monoclonal 6E10 Aβ antibody).[13]

Fig. 2: Source: Jovalekic et al. EJNMMI Radiopharmacy and Chemistry (2017) 1:11. doi:10.1186/s41181-016-0015-3 (Copyright held by Piramal Lifesciences).

Amyloid-PET does not alone provide a diagnosis, rather it forms part of the greater assessment workup by clinical experts, including neurologists, psychiatrists and geriatricians. The knowledge of the presence or absence of β-amyloid plaques has been shown to support a confident differential diagnosis and a tailored patient care plan, including use of medications where appropriate. There is also added value for patients and their caregivers in knowing the cause of dementia, enabling decision-making and planning for the future including the possibility of enrolling into clinical trials.[5,6,8,22–28]

 The future of diagnostic imaging

The National Institute for Health and Care Excellence (NICE) is reviewing guidance on the organisation and delivery of diagnostic services, due for publication in August 2017. The scope of the revised guidance will encompass imaging in neurodegenerative diseases, as part of the wider radiology/nuclear medicine service in the NHS. This will affect not only patients, but all staff who use, refer and interpret diagnostic services in both primary, secondary and tertiary care.[29]

Author: Vanessa Newman (MD-V, PhD), Medical Affairs Director at Piramal Imaging Ltd

References

  1. Alzheimer-Europe, The prevalence of dementia in Europe. 2015, Alzheimer Europe: Luxembourg.
  2. Prince, M., World Alzheimer Report 2015: The Global Impact of Dementia – an analysis of prevalence, incidence, cost and trends, A.s.D.I. (ADI), Editor. 1015: London.
  3. Prince, M., World Alzheimer Report 2014: Dementia and Risk Reduction – an analysis of protective and modifyable factors, A.s.D. International, Editor. 2014, Alzheimer’s Disease International (ADI): London, UK.
  4. NICE, Clinical guideline 42: Dementia: Supporting people with dementia and their carers in health and social care. 2006, National Institute for Health and Care Excellence (NICE): London, UK.
  5. Deckers, K., et al., Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry, 2015. 30(3): p. 234-46.
  6. Kivipelto, M. and F. Mangialasche, Alzheimer disease: To what extent can Alzheimer disease be prevented? Nat Rev Neurol, 2014. 10(10): p. 552-3.
  7. Catafau, A.M. and Bullich, S., Amyloid PET imaging: applications beyond Alzheimer’s disease. Clin Transl Imaging, 2015. 3(1): p. 39-55.
  8. Sabri, O., et al., Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement, 2015. 11(8): p. 964-74.
  9. Sabri, O., et al., Beta-amyloid imaging with florbetaben. Clin Transl Imaging, 2015. 3(1): p. 13-26.
  10. Vos, S.J., et al., Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology, 2013. 80(12): p. 1124-32.
  11. Bloudek, L.M., et al., Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis, 2011. 26(4): p. 627-45.
  12. Sperling, R.A., Karlawish, J., and Johnson K.A., Preclinical Alzheimer disease-the challenges ahead. Nat Rev Neurol, 2013. 9(1): p. 54-8.
  13. Jovalekic, A., et al., New protein deposition tracers in the pipeline. EJNMMI Radiopharmacy and Chemistry, 2017. 1(1).
  14. Roe, C.M., et al., Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology, 2013. 80(19): p. 1784-91.
  15. Dubois, B., et al., Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 2014. 13(6): p. 614-629.
  16. Perret-Liaudet, A., et al., Risk of Alzheimer’s disease biological misdiagnosis linked to cerebrospinal collection tubes. J Alzheimers Dis, 2012. 31(1): p. 13-20.
  17. Kang, J.H., et al., Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease biomarkers. Clin Chem, 2013. 59(6): p. 903-16.
  18. Ng, S., et al., Visual Assessment Versus Quantitative Assessment of 11C-PIB PET and 18F-FDG PET for Detection of Alzheimer’s Disease. Journal of Nuclear Medicine, 2007. 48(4): p. 547-552.
  19. Perani, D., et al., A survey of FDG- and amyloid-PET imaging in dementia and GRADE analysis. Biomed Res Int, 2014. 2014: p. 785039.
  20. Piramal, NeuraCeq (florbetaben 18F) Summary of Product Characteristics. 2015, Piramal Imaging Ltd.
  21. EMA. Human Medicines: European public assessment reports. 2016 [cited 2016 July]; Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d124.
  22. Johnson, K.A., et al., Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement, 2013. 9(1): p. e-1-16.
  23. Johnson, K.A., et al., Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med, 2013. 54(7): p. 1011-3.
  24. Scarsbrook, A. and Barrington S., Evidence-based indications for the use of PET-CT in the United Kingdom 2016, R.C.o.P. Royal College of Radiologists, Editor. 2016, RCR, RCP: London, UK.
  25. Bang, J., Spina, S., and Miller, B.L., Frontotemporal dementia. The Lancet, 2015. 386(10004): p. 1672-1682.
  26. Kobylecki, C., et al., A Positron Emission Tomography Study of [18f]-Florbetapir in Alzheimer’s Disease and Frontotemporal Dementia. Journal of Neurology, Neurosurgery & Psychiatry, 2013. 84(11): p. e2-e2.
  27. Barthel, H., Seibyl, J., and Sabri O., The role of positron emission tomography imaging in understanding Alzheimer’s disease. Expert Rev Neurother, 2015. 15(4): p. 395-406.
  28. Pontecorvo, M.J., et al., A randomized, controlled, multicenter, international study of the impact of florbetapir (<sup>18</sup>F) PET amyloid imaging on patient management and outcome. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 11(7): p. P334.
  29. NICE. Dementia – assessment, management and support for people living with dementia and their carers: GUIDANCE. NICE Guidance 2016 [cited 2016 June]; Available from: https://www.nice.org.uk/guidance/indevelopment/gid-cgwave0792.

About Vanessa Newman

Vanessa’s background is in neurology (epilepsy and Down’s syndrome) and more recently in the field of neuroimaging in dementia. She has worked at Piramal Imaging since early 2015 and during this time has had the pleasure of seeing how quickly this area of medicine is moving, with increasing methods and imaging diagnostics available for use with people living with dementia.

Date of preparation: July 2016. ©Piramal Imaging Ltd. UK/FBB/1015/0021

Piramal Imaging Ltd, Langstone Technology Park, Langstone Road, Havant, Hampshire PO9 1SA, United Kingdom

Piramal Imaging Ltd medical information enquiries: Medicalaffairs.imaging@piramal.com
Piramal Imaging Ltd media enquiries: inquiries.imaging@piramal.com

Piramal is a British Institute of Radiology corporate member.

Piramal logo

Has imaging become too effective?

Adrian Dixon

Professor Adrian Dixon has a worldwide reputation as an academic and a radiologist and has published extensively on body and musculoskeletal CT and MR imaging.

He will deliver the BIR Toshiba Mayneord Eponymous Lecture called “Has imaging become too effective?” at UKRC on 7 June 2016 at 13:00.

Read this fascinating interview with him and get a taster of this “not-to-be-missed” presentation.

You will be delivering the BIR Toshiba Lecture at UKRC this June. Your lecture is called “Has imaging become too effective?” Can you give us a “taster” of what you mean by this?

“You should say what you mean!” as the March Hare said in “Alice’s Adventures in Wonderland”.

What do people mean by “effective”? Effectiveness is only an appropriate term if qualified. Modern imaging certainly is effective at increasing the diagnostic confidence about a diagnosis and excluding certain diagnostic possibilities. It has taken a long while to prove that it is effective in saving lives. It has become so effective that, in many conditions, an image can be rendered to make the diagnosis obvious to the man in the street.

And clinicians now tend to refer for imaging without stopping to think! It has also become so effective in demonstrating probably innocuous lesions that the worried well can become even more of a hypochondriac! In some societies this can lead to over usage, excessive radiation exposure and increased costs.

If imaging is “too effective” – is radiology still a worthwhile career choice?

Yes! It is the most fascinating of all medical careers and every day a radiologist should see something that he or she has never quite seen before. The radiologist is the ultimate medical detective and cannot conceivably get bored. Indeed radiologists get reimbursed to solve crossword puzzles on elaborate play stations!

What have been the three biggest challenges for you in your career?

Radiologists have had to learn and relearn their skills at frequent intervals during their careers. Radiology will only survive as a specialty if the radiologist knows more about the images, the technical aspects and the interpretative pitfalls than their clinical colleagues.

Did you ever meet Godfrey Hounsfield (inventor of CT imaging) and what were your memories of him?

opening of scannerI did indeed meet Sir Godfrey on numerous occasions. His humility and “boffin style” of science greatly appealed. Some of the stories at the numerous events surrounding his memorial service were truly fascinating, including his inability to accept any machine which he could not understand without taking it to bits and then reassembling it!

 

Given the financial pressures on healthcare, will the required investment in the latest imaging technology be affordable?

Some of the developments in personalised medicine may be unaffordable. Generic contrast agents will continue to be used in large volumes. The cost of creating “one off” agents may prove unjustifiable.

Why would you encourage someone to join the BIR?

Because of the fun of interdisciplinary discussion and the pride of being a small part of the oldest radiological society!

Does spending more money on equipment mean a better health service?

I passionately believe that prompt access to imaging makes a major contribution to excellent healthcare. But that does not necessarily mean that every hospital has to have every machine at the top of the range. A rolling programme of equipment replacement is an essential part of delivering a high-quality radiological service.

The most difficult thing I’ve dealt with at work is…

An electrical power cut during the middle of a tricky adrenal CT-guided biopsy!

If Wilhelm Roentgen could time travel to Addenbrooke’s hospital, what would he be most impressed with?

The sheer size and the number of staff of the radiology department!

When its 2050, what will we say is the best innovation of the 21st century in healthcare?

Data mining and health statistics.

Who has been the biggest influence on your life? What lessons did that person teach you?

All my previous bosses have influenced my career. I have learnt something from each of them. All of them stimulated me to ask the question “why are we doing things this way”? “Can it be done better”?

My proudest achievement is…

Helping to make the Addenbrooke’s Radiology department one of the most modern in the UK.

What advice would you pass on to your successor?

Never give up, try, try and try again and remember “the more you practice, the luckier you get”.

What is the best part of your job?

That I have been lucky to have had a succession of challenges in the various roles that I have held, all of which have kept me on my toes.

What is the worst part of your job?

Leaving salt of the earth friends as I have moved from role to role.

If you could go back 20 years and meet your former self, what advice would you give yourself?

Do not worry so much – it will all be alright on the night.

Adrian Dixon

Adrian Dixon

What might we be surprised to know about you?

That I support Everton Football Club.

How would you like to be remembered?

For influencing the careers of younger colleagues – hopefully to their benefit!

260215 opening

Professor Dixon will deliver the BIR Toshiba Mayneord Eponymous Lecture called “Has imaging become too effective?” at UKRC on 7 June 2016 at 13:00.

Book your place at UKRC (early bird rate ends 15 April 2016)

 

Toshiba-leading-innovation-jpg-large Thank you to Toshiba for supporting the BIR Mayneord Eponymous Lecture

 

 

Making the case for radiographer reporting

SONY DSC

With a steady and sustained rise in imaging workloads driven by an ageing population, new and evolving technologies, and a drive for patient-focused care, radiology departments are turning to new ways to provide services. Nick Woznitza, Clinical Academic Reporting Radiographer at Homerton University Hospital, east London, and Canterbury Christ Church University, Kent, makes the case for radiology departments meeting these ever-increasing demands through radiographer reporting.

Using the example of his experience in the neonatal department of Homerton University Hospital he explains how, with robust research and training, and the appropriate use of skill mix, departments can offer a safe, efficient and patient-focused service.

Expansion of the neonatal medicine department at Homerton produced an increase in plain imaging workload and, coupled with a shortage of consultant paediatric radiologists, meant that the neonatal X-rays did not receive a timely definitive radiology report. The neonatal unit is a large, tertiary referral facility with 46 cots, 900 admissions and 13,600 cot/days per annum in 2013–2014. In order to provide an optimal service to these vulnerable patients, it was agreed to develop a radiographer-led plain imaging neonatal reporting service.

A bespoke, intensive training programme was designed in collaboration with radiology and neonatal medicine at Homerton, Canterbury Christ Church University and the paediatric radiology department of the Royal London Hospital. The radiographer was already an established reporting radiographer, interpreting skeletal and adult chest X-rays in clinical practice, so the training programme focused on the unique physiology and pathology of neonates. Training consisted of self-directed learning, pathology and film viewing tutorials, practice reporting, and attendance at the neonatal X-ray meeting at the Royal London Hospital. This immersive experience was achieved via secondment for one and a half days a week.
Upon qualification of the reporting radiographer, all reports were double read by a consultant paediatric radiologist, to successfully manage the transition into practice whilst maintaining patient safety in line with best practice recommendations.

To ensure that the performance of the trained reporting radiographer was comparable to that of a consultant paediatric radiologist a small research study was conducted (Woznitza et al, 2014), supported by research funding from the International Society of Radiographers and Radiographic Technologists (ISRRT). This study confirmed only a small number of clinically significant reporting radiographer discrepancies (n = 5, 95% accuracy), comparable to the performance of the paediatric radiologists. This study provided further evidence that the introduction of radiographer neonatal plain imaging reporting has not adversely impacted patient safety or care.

Activity figures (July 2011 – September 2014) were obtained from the radiology information system to determine the number of X-ray examinations performed and the proportion receiving a radiographer report. An average of 285 X-rays were performed each month, however, there was a marked increase in March 2012 from 158/month (July 2011 – February 2012) to 328/month (March 2012 – September 2014). The radiographer has made a sustained, significant contribution to the reporting service, interpreting an average of 92.5% of the X-ray examinations and responsible for >95% of examinations in 20 of the 36 months.

Building on the collaboration between radiology and neonatal medicine, a weekly neonatal X-ray meeting was introduced. Facilitated by the reporting radiographer and paediatric radiologist, this forum has increased radiology–clinician engagement and in turn patient care, facilitated discussions and acts as an excellent educational resource. Recognising the importance of this meeting, the senior neonatal clinicians requested that the reporting radiographer convene the meeting when the paediatric radiologist is absent on leave.

The introduction of a radiographer neonatal X-ray reporting service demonstrates that, with collaboration and support, novel approaches can help provide solutions to increasing activity in radiology in an effective, efficient and patient focused manner without compromise on patient safety. Collaboration and team work are fundamental when undertaking service delivery change. The support of both the radiology department, under the leadership of Dr Susan Rowe, and the neonatal unit, led by Dr Zoe Smith with mentorship from Dr Narendra Aladangady, has been essential in the success of this service.

Nick Woznitza biography
Nick qualified as a diagnostic radiographer from the University of South Australia and, following several roles in rural and remote Australia, moved to the UK in 2005.

An accredited consultant radiographer with the College of Radiographers, Nick reports a range of plain imaging examinations including skeletal, chest and neonatal X-rays. He has recently taken up a clinical academic radiography role at Homerton University Hospital and Canterbury Christ Church University, with this blended role facilitating image interpretation teaching to radiographers and other health professionals and his research into the accuracy and impact of radiographer reporting.

Reference
Woznitza N, Piper K, Iliadis K, Prakash R, Santos R, Aladangady N. Agreement In Neonatal X-ray Interpretation: A Comparison Between Consultant Paediatric Radiologists and a Reporting Radiographer. International Society of Radiographers and Radiographic Technologists 18th World Congress. June 2014; Helsinki, Finland, 2014.

How imaging technology can help tackle the funding challenge facing healthcare

Karl Blight high resKarl Blight, UK and Ireland General Manager at GE Healthcare considers how imaging technology can help tackle the funding challenge facing healthcare

NHS England’s recent strategy paper, ‘A Call to Action’ [1] Identified a potential £30 billion funding gap between spending and resources by 2020-21 if services continue to be delivered as they are now. This challenge will require significant changes in how healthcare is provided so that productivity can be improved and costs reduced.

While much attention will be paid to structural changes around how the NHS is organised, and to where and how patients access healthcare and are treated, funding decision makers need to recognise that investment in appropriate technology can make a major contribution to improving the efficiency of the healthcare system. There is a general misconception that the up-front cost of healthcare technology is prohibitive and, at a time of economic austerity, should be amongst the first areas to be constrained. But, this can be a false economy. Persisting with older technology can lead to higher maintenance costs, disrupted patient appointments due to increased downtime and slower scans, while newer equipment can increase productivity with higher uptimes and better quality images that enable more confident diagnoses and make repeat scans less likely.

Meanwhile, some newer scanners feature state-of-the-art technology that can help save time for clinicians and reduce the burden of paperwork, for example connecting to field engineers who help solve issues remotely so that clinicians can focus on providing patient care. In addition, many medical device manufacturers are investing in the development of new products which have been engineered to meet specific needs at a lower price point. Many are specifically designed to be portable and efficient to operate for the user. Not all situations require the high end technology, and manufacturers are providing equipment that can be tailored to the particular needs of the user or service.

Revolutionary developments in medical technology encompass not only the physical kit. The rise of digitisation, particularly in imaging and in data analysis, transfer and management, is good for the patient and also has huge potential to boost productivity. The combination of big data analytics and clinical information is helping healthcare professionals to identify issues, design solutions and implement patient and system level changes much faster than previously possible. There is a vast reserve of data in healthcare and we are only at the beginning of making the most of it.

The medical device industry, by investing in the development of new technologies, is playing an important role in helping practitioners to deliver better, more cost effective care to patients. Clinicians and technology providers alike now need to ensure that UK healthcare budget holders don’t just focus on the perceived costs associated with new equipment, and instead understand and recognise the value, productivity potential and long term benefits that investing in appropriate technology can bring, both to improving patient care, and to helping the NHS meet its funding gap.

[1] http://www.england.nhs.uk/2013/07/11/call-to-action/

Happy belated 65th birthday

Neil Mesher, Managing Director, Philips Healthcare

Neil Mesher

It is rare for a day to pass when the healthcare system in the UK is not in the media spotlight, and it’s not very often that good news sells newspapers. Indeed, as I write this blog, I notice that the “crisis” in A&E is back on the home page of the BBC, with fears over how prepared the system is for the onslaught of winter, while it’s still 30 °C outside!

 

1017632_10151463792547721_1128585289_n

Of course, it’s worth remembering that for every newspaper headline, millions of people are cared for and successfully treated by the health service in all its guises, each day.  However, as the NHS turned 65 last month we have to acknowledge that the system does have structural, long-term challenges. Those born in the years before the NHS, the over 65s, currently make up 17% of the population. In the next 50 years that percentage will rise to 27%, with the over 85s set to be the fastest growing part of the population. These statistics are in part a measure of the past success of the NHS, but an ageing demographic, living with multiple long-term conditions, will be a key factor in how its future is shaped.

1948-NHS-leafletThere are many debates in the public arena about how to address these challenges in the coming years. The quality, innovation, productivity and prevention (QIPP) agenda undoubtedly has a significant role to play as a framework for the NHS. The rapid adoption and spread of innovation, supporting better quality care and improvements in productivity are all objectives that the whole of the healthcare “industry” can sign up to. Putting the patient at the centre of this process, supported by appropriate technology and resources, will positively impact patient outcomes.

Radiology has a pivotal role here in delivering accurate and timely diagnosis, enabling clinicians and patients to make informed choices about the direction of treatment and care. There was a fascinating debate on the radio last week about the notion of “too much healthcare”, and it concerned a patient who had been successfully diagnosed and treated for cancer. However, the aggressive approach to his treatment had left him with a number of serious long-term issues which could have been avoided. I was left with a sense that better diagnosis and information could have led to a better patient outcome, and significantly reduced the initial and ongoing treatment costs.

As a manufacturer and provider of healthcare services, at Philips we are working to understand how the QIPP agenda is being implemented at local levels, so that we can deliver tailored solutions. By combining the capabilities of the NHS with the technical expertise and infrastructure of a large multinational company, we believe that we can achieve more together. We are on a quest to develop more innovative solutions that will enable you to collaborate freely, diagnose more confidently and provide care passionately.

Here’s to the next 65 years!

Neil Mesher, Managing Director, Philips Healthcare