Radiography, Research, and You

Kim Mason head and shoulders image
Kim Mason

Kim Mason, an Audit and Research Radiographer for Mid Yorkshire Teaching Hospitals Trust, talks about their role as well as the value of radiographer engagement in research activities and how to get involved.

In December, 1895, Wilhelm Röntgen would x-ray the hand of Anna Bertha Ludwig, his wife, using a photographic plate. The new discovery lit a fire in the scientific community, and was so sensational that in the following year over 1,000 articles would be published on the topic of X-rays. Over the next 130 years, medical imaging has undergone many varied evolutions to become a cornerstone of modern-day medicine. All beginning with that first piece of research.

Radiography has exploded into a variety of modalities and specialisms from CT to Ultrasound to MRI; all driven by research and development. That is where I come in.

Hi, I’m Kim and I am an alternative-styled, funky-haired, septum-pierced, disabled Audit and Research Radiographer. That is to say, I’m fairly easy to pick out of a line up. I’m also passionate about education, research, and (of course) radiography. This, I’ve been told, is also very easy to pick up on.

I graduated with my radiography degree in 2018 and since then I’ve worked in a wide variety of departments, from plain film to nuclear medicine. Since I found something to love in every modality it never really mattered which one I was in. Prior to my current position, I’ve spent time as a Radiation Protection Supervisor, and well as a trainer for graduate and post graduate radiographers. Now I’m in Audit and Research, which is far different to anything I’ve done before.

So, what is an Audit and Research Radiographer?

Kim sat in their wheelchair at the UKIO 2023 conference

My position is entirely based in research so I do not currently undertake any non-research imaging. However, I’m not entirely non-clinical. I get trained to undertake research scans on new equipment as required for me to carry out the necessary imaging for research trials. I also provide support to all trials requiring access to our radiography department, regardless of the imaging modality.

My job requires that I read a lot of trial protocols so that I can determine whether we have the necessary resources to undertake the trial. It can be hard work, and for me to be effective I have to have a good understanding of how each of our trusts’ imaging modalities function. I also need to have strong communication skills, especially in regards to explaining radiography perspectives to multi-disciplinary team members who may have little to no understanding of imaging. More than this, I need to be able to form and maintain good relations with all sides to ensure that effective communication can take place.

The work I do allows for better outcomes between radiology and research departments. It also affords me the opportunity to be a part of progress, seeking out better practice or improved technology for the future of imaging. In addition, I am able to undertake my own research, working towards my goals of further academic qualifications.

My role is important. I feel that I and my work contributions are valued by both the radiology and research teams. My pathway for personal development is clear and I am able to see the benefits in the set-up and management of the trials my Trust undertakes.

What is Radiography research and why is it important?

There is often research aimed at improving and advancing the field of diagnostic imaging. Currently there are trials into new scanning techniques; new equipment with the potentials for dose reduction and/or improved image quality and patient experiences; and the use of AI in imaging and reporting.

The benefits of improvements in our field are numerous. Every radiographer wants to give patients the best experience they can, however this is often at odds with the nature of our job. Requiring patients to hold uncomfortable positions when they are in pain or worried; perhaps having to go through narrow tubes which are sometimes incredibly loud; needing injections which makes them feel weird or mean they are radioactive and have to keep distance from other people at a time when they could really do with support. With research, we can aim to improve these experiences; reduce scan times or radiation exposures, wider bore scanners or open scanners, even finding new imaging or testing which removes the need for the ionising radiation all together!

Patients are at the heart of the NHS, and diagnostic imaging is often an area in which a good patient experience can be harder to provide (that is not to say that we don’t try!). With research, we have the potential to make those improvements to service, to provide for our patients in the way which we want to and the way that they deserve.

How can I get involved?

Often, radiography research is overseen by radiologists, doctors and orthopaedic surgeons, but there is no reason why radiographers shouldn’t also get involved. As we are the ones who use the equipment on a daily basis, consent and care for the patients during imaging, and come into contact with the faults and issues. Our profession contains a wealth of knowledge which can be used to improve all aspects of radiography.

You don’t need any academic qualifications to get started with research activities. In fact, many radiographers image research patients without being privy to the research aims. In a busy department, such patients are treated the same as any other in most regards. If you do image a research patient, perhaps look into the trial itself. As well as being interesting additional information, it can be used as material for CPD in the form of a case study or reflective piece. You may also discover potential ways to improve the patient experience within your department and help to enact future change.

Look into what your hospital requires for research involvement. The Good Clinical Practice (GCP) qualification, which is usually necessary, can be found for free as an online e-learning module. The NIHR website provides a lot of helpful information for getting started. NIHR also provides help for those who are wanting to gain further academic qualifications, such as through grant applications for fellowship awards. These are highly competitive but allow better access for NHS employees to undertake Masters or Doctorate level qualifications. The NIHR also run conferences for those who are new to research but interested in how they can take part.

You could also look at taking part in your department’s audits. Audits are a great way to check in on the health of your department, what you are doing well, and what you can improve on. Audit skills can also overlap with those necessary for research work, as well as provide possible avenues for research within your department.

How do I get a research job?

The roles of radiographers in research are expanding. Some hospitals offer clinical research radiographer positions, which give additional responsibility to train for and undertake specialised research imaging, often alongside a multi-disciplinary team. Other trusts may offer training for those wanting to aid research trials.

For research-specific roles, take a look at NHS jobs. You will find posts for Research Radiographers or Research Clinical Practitioners/AHPs. When I applied for my Audit and Research radiographer post, I had no specific research skills however I was well versed in audits and had learned about the processes of research in my own time. Enthusiasm goes a long way when applying for research roles, we need radiographers who are driven and raring to get stuck in.

There is so much experience and knowledge that radiographers have to offer research, and there’s so much improvement and advancement to be received in turn. I strongly encourage any radiographers to give it a try. You never know, you may get hooked!

To submit your research to a BIR journal find out more here:

BJR https://www.editorialmanager.com/bjr/default2.aspx

BJR Case|reports https://www.editorialmanager.com/bjrcr/default2.aspx

BJR|Open            https://www.editorialmanager.com/bjro/default2.aspx

About Kim Mason

Kim Mason is a HCPC registered diagnostic radiographer, graduating from the University of Leeds with a 1st Class BSc Honours in Diagnostic Radiography in 2018. They have experiences in education both inside and outside of radiography, and have a passion for improving the radiography services in the UK.

Kim has multiple chronic conditions, and as such, they are an ambulatory wheelchair user. This has given them keen insight into the experiences of patients within the radiography department, having undergone imaging in most modalities as a patient. They have a vested interest in educating the public about radiography, and educating radiographers on improvements to patient care. 

An explosion in imaging: Is this the future?

Prof Simon Padley

Following the recent BIR live event Imaging explosion across the pond – causes and solutions in which the UK and USA radiology and healthcare systems were compared, DMC Radiology Reporting co-director Professor Simon Padley reflects on the UK position.

The USA often provides a window into our own future

In the application of imaging technology, we often follow trends that emerge in the US – the rise in CT and MRI utilisation are two examples, and more recently the growth of outsourcing is following a similar trajectory.

With different healthcare models, the US does not rely on central funding to replace or add to CT and MRI capacity. NHS funding comes from the government’s general revenue, and healthcare services are provided to all residents of the UK, regardless of their ability to pay. In contrast, the US medical system is a mixed system of public and private funding. It includes a combination of private health insurance, employer-based insurance, individual out-of-pocket payments, and public programs like Medicare and Medicaid, which are funded through federal and state taxes.

In 2022 there were 6.6 million CT studies on NHS funded patients according to NHS Digital, at a time when the population was reported to be 55 million. This equates to 121 studies per 1000 of the population. In the USA  this figure is more than double at 278 CT studies per 1000 of the population (84 million CT studies in a population of about 333 million CT Scans Each Year – iData Research).

And that is just CT! Official data for 2021/22 shows that between April 2021 and March 2022, NHS services in England carried out 43.8 million imaging tests across all modalities Ref. This reflects an ever-growing requirement for imaging studies to be undertaken and reported.

At the same time, the workforce needed for this activity has fallen far behind that required. We bump along the bottom of the league table for radiologists per 100,000 of the population (8.5). Europe has 13, the US 11. Couple this with complexities of pension taxation, IR35 and COVID related burnout all nudging older highly skilled and efficient radiologists towards the exit door and we have a perfect storm. Even today we have 2000 full-time consultant clinical radiologist posts unfilled across the UK. The RCR predicts a 39% workforce shortfall by 2026 (equating to 3166 full time radiologists).

This may create stress in the radiology department, but rest assured it also causes grey hair and sleepless nights for those that inhabit the carpeted management corridors. Hidden amongst every backlog of reporting there is serious pathology lying undiagnosed. When that report is provided, and the treatment options are discussed, some options will have closed, tumours will have stage shifted and outcomes will be less good. This constitutes a chief executive’s nightmare but has caught the medicolegal world’s attention. So, what are we to do?

Teleradiology and the NHS

Almost all acute trusts have turned to the services of the teleradiology community, now playing a vital role in helping to address this capacity shortfall. In the past 10 years the market has grown with a compound annual growth rate of about 10-15%.

Who are all these extra radiologists and where do they come from? Well of course, by-and-large, they are you and me. But we are a limited pool, the market rates for reporting (set by the NHS) are not great and there are only so many hours in the day.

So where can we look for additional workforce capacity and will we be allowed to access it? To allow this to happen the NHS will need to engage more readily with the solutions that are now emerging and examine the detail of how we, in the teleradiology world, are already addressing data governance and medicolegal concerns.

At DMC Radiology Reporting, we already work in partnership with many NHS Trusts. We strive to deliver fast, accurate radiology reporting with innovation and efficiency. We have a rigorous commitment to clinical governance, and we are proud of our work force of GMC-registered/FRCR-radiologists with sub-specialty interests.  Like many others, we are interested in how these problems are being addressed in the US.

About Professor Simon Padley

In 2013 Simon co-founded DMC-Radiology Reporting, which has been growing and developing ever since, focusing on sub-specialist high quality outsourced reporting.

Simon is a cardiothoracic and interventional radiologist, appointed in 1994. As a previous imaging director in the NHS for many years he developed a range of new services, most recently as lead radiologist for Royal Brompton Hospital Diagnostic Imaging Centre, opened in 2022. This facility incorporates one of the only combined interventional bronchoscopy and radiology facilities in the country.

As a Professor of Practice (Diagnostic and Interventional Radiology) since 2016, at the National Heart & Lung Institute, Imperial College London, he maintains an active academic career, publishing widely with over 220 articles in peer reviewed journals.

Why understanding breast density matters

Cheryl Cruwys, European Education Coordinator at DenseBreast-info.org/Europe, highlights the importance of understanding the screening and risk implications of dense breast tissue. DenseBreast-info.org’s mission is to advance breast density education and address the gap in knowledge about dense breasts.

Mammography remains the standard of care in screening for breast cancer and has been proven to reduce the mortality rate [1].  However, in dense breasts, cancers can be hidden/obscured on mammography [2,3] (Fig.1) and may go undetected until they are larger and more likely to present with clinical symptoms [4]. Breast density has also been identified as the most prevalent risk factor for developing breast cancer [5].   

Women with dense breasts are BOTH more likely to develop breast cancer and more likely to have that cancer missed on a mammogram [5]

Fig. 1 – Cancer on a mammogram of a fatty vs a dense breast

What is Dense Breast Tissue?

Breasts are made of fat and glandular tissue, held together by fibrous tissue. The more glandular and fibrous tissue present, the “denser” the breast. Breast density has nothing to do with the way breasts look or feel. Whilst dense breasts are normal and common, dense breast tissue makes it more difficult for radiologists to detect cancer on a mammogram.  

Breast density is determined through a mammogram and described as one of four categories (Fig. 2), (A) Fatty, (B) Scattered, (C) Heterogeneously Dense, (D) Extremely Dense.  Breasts that are (C) heterogeneously dense, or (D) extremely dense are considered “dense breasts”.  Fig. 2

Figure 2

Dense Breasts Facts

  • 40% of women over age 40 have dense breasts.
  • Dense breast tissue is an independent risk factor for the development of breast cancer; the denser the breast, the higher the risk.
  • Mammograms will miss about 40% of cancers in women with extremely dense breasts.
  • Women with extremely dense breasts face an increased risk of late diagnosis of breast cancer.
  • In these women, screening tests, such as ultrasound or MRI, when added to mammography, substantially increase the detection of early-stage breast cancer.

Dense Breast Educational Resources

DenseBreast-info.org/Europe is the world’s leading website about dense breasts. This medically-sourced resource is the collaborative effort of world-renowned experts in breast imaging and medical reviewers. Fig 3.

Figure 3

                                                     

The website features educational tools for both European Patients and Providers Fig. 4. (a and b)

Figure 4 (a)

CME Course – Learn Why Breast Density Matters!

The DenseBreast-info.org resource includes a free CME/CE course, Dense Breasts and Supplemental Screening suitable for primary care healthcare providers, including family medicine, internal medicine, and OB/GYN physicians and midlevel providers, as well as radiologists, and radiologic technologists (UEMS-EACCME® mutual recognition for AMA credits).

A growing number of medical organisations link to the DenseBreast-info.org website, including the EFRS (European Federation of Radiographer Societies) and the Society of Radiographers.  

                               

Figure 4 (b)

                                                                                                                                        

The website includes breast screening guidelines in Europe. A comparative analysis table summarises the guidelines in each country.

NHS Breast Screening Programme

Currently in the UK, population routine screening mammograms are offered to women aged 50–74, every 3 years. Though dense breasts affect the likelihood that a cancer will be masked and increases a woman’s risk for developing breast cancer, it is not part of UK data collection. A woman’s breast density is not assessed, not recorded in medical records, nor reported to her. For diagnostic purposes, this may differ. However, in many other European country screening programs, a woman’s breast density is assessed, recorded, and the woman’s personal breast density category is included in the mammography report.

News in Europe:  the EUSOBI Recommendations

Population based breast screening guidelines vary across Europe. In the UK, asymptomatic women attending routine national breast screenings receive mammography alone. In some countries (e.g., Austria, Croatia, Hungary, France, Serbia, Spain, Switzerland) screening guidelines for women with dense breasts include that they be offered supplement ultrasound following a mammogram.

Following recent MRI screening trials there is cumulating evidence which confirms that women with dense breasts are underserved by screening with mammography alone [7,8]. In March 2022, new guidelines were issued in Breast cancer screening in women with extremely dense breasts by the European Society of Breast Imaging (EUSOBI) [9] highlighting the growing evidence, particularly the results of a randomised, multicentre controlled study, the Dense Tissue and Early Breast Neoplasm Screening (DENSE) Trial. [7,8]

The European Society of Breast Imaging 2022 recommendations now step away from the one-size-fits all approach of mammography that is currently adopted by most European screening organizations and advocates for tailored screening programmes. There is compelling evidence that the new recommendations enable an important reduction in breast cancer mortality for these women. 

Summary of the EUSOBI Recommendations

Below is EUSOBI’s summary graphic of the recommendations (Fig. 7) that highlight:   

  • Supplemental screening is recommended for women with extremely dense breasts.  
  • Supplemental screening should be done preferably with MRI …. where MRI is unavailable… ultrasound in combination with mammograph may be used as an alternative.

In addition to recommended additional screening in women with extremely dense breasts, note that EUSOBI recommends that “women should be appropriately informed about their individual breast density in order to help them make well-balanced choices.”

EUSOBI acknowledges that it may take time before the new recommendations are implemented in Europe and that the level of implementation is dependent on the resources that are available locally. 

It is important to emphasize that the EUSOBI recommendations highlighted in this article are not yet guidelines in Europe. Of course, it is hoped that in Europe, national breast screening committees try to implement these recommendations as soon as possible to benefit women.   

                                                                                                                                                                                                                       

Figure 7

World Dense Breast Day Success!

DenseBreast-info.org launched the first #WorldDenseBreastDay on 28 September 2022.

Nearly 100 posts with great images were created and ran for 24 hours across social media channels.  Analytics detailed participation from people in 37 countries, over 8.6 million people saw/read the posts and over 17,000 people interacted with the posts.

The purpose of the day is to raise awareness about dense breasts and share medically-sourced educational resources available for women and health providers.                                                                                          

Please join us next year for #WorldDenseBreastDay which will take place on 27 September 2023!                               

Take Home Message:

  • Breast density can both hide cancers on a mammogram and increases the risk of developing breast cancer.
  • Women with dense breasts benefit from additional screening tests after their mammogram
  • Breast density education and access to supplemental screening can mean the difference between early- or late-stage diagnosis
  • Physicians should be educated and prepared to have patient conversations about breast density   
  • For more information about Dense Breasts visit: DenseBreast-info.org/Europe

——————————————————————————————————-

1, Tabar L, Vitak B, Chen T H et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology 2011;260:658-63

2. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE (2012) Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09-41. Radiology 265:59–69

3. Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225:165–175

4. RoubidouxMA, Bailey JE,Wray LA, HelvieMA(2004) Invasive cancers detected after breast cancer screening yielded a negative result: relationship of mammographic density to tumor prognostic factors. Radiology 230:42–48

5. McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a metaanalysis. Cancer Epidemiol Biomarkers Prev 15:1159–1169

6. Vourtsis A, Berg W A. Breast density implications and supplemental screening. Eur Radiol 2019;29:1762-77.

7. Bakker M F, de Lange S V, Pijnappel R M et al. Supplemental MRI screening for women with extremely dense breast tissue. N Engl J Med 2019;381:2091-102.

8. Stefanie G. A. VeenhuizenStéphanie V. de LangeMarije F. BakkerRuud M. PijnappelRitse M. MannEvelyn M. MonninkhofMarleen J. Emaus, Petra K. de Koekkoek-Doll Published online: Mar 16 2021 https://doi.org/10.1148/radiol.2021203633Radiology Vol. 299, No. 2 Supplemental Breast MRI for Women with Extremely Dense Breasts: Results of the Second Screening Round of the DENSE Trial

9. Mann, R.M., Athanasiou, A., Baltzer, P.A.T. et al. (2022) Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI) Eur Radiol 32, 4036–4045 

Cheryl Cruwys is a British breast cancer patient, advocate, author and educator. While living in France (2016) she was diagnosed with early-stage breast cancer and credits the early detection of breast cancer to the French standard practice of performing supplemental screening on dense breast tissue. She is founder of Breast Density Matters UK, European Education Coordinator at DenseBreast-info.org/Europe, a member of the European Society of Radiology Patient Advisory Group and a Patient Rep on the ecancer.org Editorial Board.

Cheryl works at the European level with patient advocacy and medical societies, attends/presents at key scientific symposiums and works with international breast imaging experts to disseminate education on dense breasts. DenseBreast-info.org 

Innovation Through a Pandemic – How to survive when there’s nothing to report

Dr Gareth Davies describes the massive impact the COVID 19 pandemic had on elective cross-sectional reporting, reducing output to almost zero. Here he reflects on how the drive for innovation and the motivation to think differently led to a better teleradiology service for both patients and staff.

Dr Gareth Davies

The pandemic will certainly define us as an organisation. A period of uncertainty, business survival, the protection of our staff and their livelihoods and a readiness to provide a clinical service our patients rely on.

Let’s go back to the 1 January 2020. It was a time when the UK’s radiology reporting capacity was at a tipping point, backlogs of unreported examinations were in the thousands, demand for imaging services was constantly increasing, and more and more patients were being scanned.  Just in one single day in that month, Telemedicine Clinic (TMC) reported over 1400 elective cross-sectional scans to its NHS customer base.

Wind the clock forward to May 2020, and during the midst of the Coronavirus pandemic a grand total of 11 plain films were reported in a whole week.

TMC’s business is teleradiology, a service that underpins delivery of clinical services to the customers it reports for. Take away the need for outsourcing by having to stop elective scanning and there is no need for teleradiology.  Take away elective scanning and the backlogs built up over time can be cleared.  The reset button had been pressed and no one knew what was going to happen next.

TMC employ over 300 radiologists, with over 50 radiologists working in the emergency section. The recovery for this section was quick with demand returning  to normal volumes after 3 months. The recovery of the elective service has stalled in line with countrywide lockdowns but is now about 60% and getting busier.

So how did a company that had 50% of its business disappear overnight survive? The simple answer was innovation!

Response team

The first thing TMC did was to call on its European based radiologists, staff, and management teams to team up to provide an unrivalled knowledge-share hub. Coronavirus imaging from hospitals all over the world was collated to provide real-time COVID reporting best practice as the world started to understand the virus more.  In addition, top thoracic specialist radiologists from Europe who had already experienced COVID radiology were called to report cases for NHS hospitals.  A new “24/7 COVID response” reporting team was established in less than 2 weeks. 

On the back of our experience with the 24/7 COVID Response service, the TMC Academy used our reporting experience and best practice from other nations experience to create two COVID-19 online reporting modules on the TMC Academy platform and made these free to all to view and learn from.

Platform

Our next step was the deployment of the TMC Platform for our NHS customers. Where TMC had a contract in place with a Trust who also had reporting radiologists collaborating with TMC, TMC enabled the radiologist to work for their hospital using the TMC infrastructure and IT, free of charge such that the radiologist could work remotely reporting their cases, where home reporting was not available at that time. Driving down costs to our customers in the future is a focus of TMC.

TMC is proud of its recruitment process for radiologists. Our traditional model was to invite potential colleagues to our head office in Barcelona, to undergo a series of interviews and undertake test case examinations specific to their subspecialty. What do you do when you need to recruit radiologists in a period of complete lockdown, with the inability to travel even a few miles? You challenge your teams to virtualise a 3-week induction/test period of course!  This was completed again using the online TMC Academy platform to make sure all radiologists were fully vetted, interviewed, examined and quality-assured to comply with our standards and strict working regulations required to support  the UK market and the NHS.

Hub

Prior to the pandemic, TMC were aware of a growing need for acute reporting services ranging from neuro MRI ad hoc reporting to Emergency CT daytime cover to sub-specialist short turn around reporting. One of our major ambitions during this period was to innovate more integrated clinical care and break the traditional concept of teleradiology and the clearing of backlogs and night time on call. TMC are good at elective reporting and using UK and European based radiologists. TMC are also good at UK overnight Emergency CT reporting from wide awake UK and European radiologists who have moved to Australia. However, there is a mix of requirements that TMC did not fully cater for and the NHS desperately requires. From conversations with customers, it was clear that elective reporting, although destined to return with a vengeance, was not the priority. The main driver in fact was a mixture of acute and semi-urgent work so, from this, The TMC Hub and TMC Oncology concepts were created.  

Any time of the day or night, a clinician, radiographer, or radiology manager can call TMC to discuss scanning a patient.  These can be emergency patients in the day or night, they can be acute inpatients who simply need that next step in their pathway or to be discharged safely, or perhaps just a routine scan which feels urgent. The TMC Hub can help put the patient on the right pathway for their care, anytime day or night, Monday to Friday or a weekend.  TMC’s customers love the new HUB concept, it provides a real safety net that they can contact us to get a patient scan completed, all within the hospitals set guidelines.

Artificial Intelligence

Last but not least, during the pandemic, TMC has had the opportunity to establish a dedicated team to evaluate the plethora of AI products on the market and implement products which we believe will improve patient care. Through stringent evaluation, TMC now has a number of AI products in place to assist its radiologists in making a clinical report.  For the emergency section, AI now looks at all CT PA examinations for pulmonary embolism (PE), subtle C-spine fractures in trauma scans and intracranial haemorrhage in CT brains. For elective services, the AI software looks for PEs in all CT examinations that involve the thorax as soon  as the examination arrives in the TMC PACS.  In our new low dose CT thorax reporting for the NHS lung screening / lung health check service, we are using nodule detection and automated reporting to the requirements of the NHS QA standards for such a service.  And new to TMC’s repertoire is a novel service, bringing AI to its clients without them knowing it.  Through TMC’s IT infrastructure, our AI solution can look at ALL images in a customers PACS to identify incidental PEs, assign them to a TMC radiologist for immediate reporting which is flagged to the clinician team on-site in real-time.  A scan that could have waited 3 weeks for reporting with unknown downstream costs to the Trust.    AI will not replace radiologists, but it will improve radiology workflows, something which TMC can help clients do.

Benefits

With innovation comes benefit, a benefit that can be passed on to our customers in terms of reduced costs for delivery as well as reduced costs further down the patient pathway. Innovative services such as the TMC Hub or the TMC Oncology service will give clients the confidence they need to get a scan reported first time by the most appropriate and qualified radiologists.

Teleradiology and outsourced radiology are looked upon as a cost to the NHS which needs to be removed. With over 90% of NHS services relying on overnight emergency services being delivered from the independent sector, it is hard to see how this will change any time soon.  Instead, looking at how teleradiology can help underpin service delivery, provide the AI analysis and expertise, provide the IT network to telework over international borders whilst using capacity from Europe to add to the overstretched UK workforce, the question should be how can we integrate more with our providers to deliver value-driven innovative healthcare to all people. 

About Gareth Davies

Dr Gareth Davies, UK Medical Director Head and Body Section (Full time employed)
Dr Davies has 18 years’ experience as a Consultant Radiologist in the South Wales NHS prior to joining TMC in 2019. He has a specialist interest in interventional and oncological radiology and held various national roles including the Regional Specialty advisor for training in Wales  (Royal College of Radiologists), a member of the Clinical Radiology Specialty Training committee (RCR), Lead Radiologist and Lead QA of the Wales Abdominal Aortic Aneurysm Screening Programme (WAAASP), Associate Medical Director of Cancer Diagnostics and the Clinical Lead of the Early Cancer Diagnosis Programme, Wales Cancer Network and member of the Clinical Advisory Panel for CRUK. Since Joining TMC, Dr Davies has been involved in helping form TMC Oncology as well as working within the UK Business Unit to develop a more clinically integrated approach to telemedicine with the NHS forming the TMC Hub concept.

Is artificial intelligence the key to effective and sustainable lung cancer screening?

Lizzie Barclay doctor

Dr Lizzie Barclay explores how artificial intelligence can influence lung cancer screening.

Radiology as the starting point

Imaging plays a fundamental role in lung cancer screening programmes. So, when it comes to improving technology to support the programmes, the radiology department is a good place to start.

The goal of screening is to pick up early cancers which can be treated and potentially cured, therefore improving patient outcomes (as outlined in the NHSE long term plan). Low dose CT has been shown to provide sufficient image quality for detection of early disease, whilst minimising radiation dose in asymptomatic individuals. Thoracic radiology expertise is required to determine which lung nodules may be malignant and therefore require invasive investigation, and which are likely benign and can be monitored with intermittent imaging. Appropriate follow-up recommendation helps avoid unnecessary invasive procedures, such as biopsies, and minimise patient anxiety, which are important measures of the efficacy of lung cancer screening programmes.

End to end lung cancer screening involves input from many healthcare professionals, and intelligent computer systems across specialities would benefit multidisciplinary teamwork. Thus, beyond image analysis, there are many opportunities for technology to add further support for effective and sustainable screening programmes. For instance, it could aid in the optimisation of image acquisition, access to imaging reports and relevant clinical details, tracking patient follow up, or in communication between patients and GPs.

Where AI-based image analysis makes a difference

Reading and reporting CT scans is time-consuming, and within a workforce which is already under strain, introducing a new CT-screening programme seems like a tall order. AI-driven solutions can support radiologists and contribute to successful lung cancer screening by bringing improvements in three areas:

  1. Performance

Computer intelligence can increase the performance and productivity of CT reporting, freeing up time for radiologists to spend on clinical decision making and complex cases. Specifically, AI software is well-suited for precise:

  • Detection of elusive lung nodules, and differentiation of subtle changes
  • Automatic volume measurements, to help determine the appropriate frequency of monitoring (e.g. stable vs growing nodule, according to the BTS guidelines).

What further distinguishes computers from humans is the absolute consistency in their high performance, without being impacted by common external stressors to which a radiologist would be exposed (e.g. time-pressure, workload and interruptions).

  1. (E)quality

Having a ‘second pair of eyes’ looking at the scan can increase the confidence of the radiologist in their own assessment. Additionally, making the AI-driven, accurate measurements available regardless of the level of expertise of the reporting radiologist could not only benefit quality assurance, but also equality within the radiology department. The use of AI would reduce the need for all scans to be reported by the most experienced thoracic radiologists with interest in early lung cancer detection, and instead facilitate spreading the workload across the workforce.

Another use case concerns quality assurance when outsourcing to teleradiology companies. AI-based image analysis can improve consistency of reporting, drive the recommended terminology use, and, essential for lung cancer screening, ensure access to relevant prior imaging for comparison and change assessment over time.

  1. Efficiency (via integration)

An intelligent computer system should not slow down reporting turnaround times, but improve efficiency, as well as quality, to ultimately minimize time to diagnosis (for example, the NHSE long term plan introduces a 28-days standard from referral to diagnosis or rule out).

Older CAD technology was often described as ‘clunky’ – requiring images to be uploaded to separate systems for analysis. Additional manual steps between image acquisition and the radiology report make the process time consuming, and often require radiology support staff to manage the workflow. It is important to consider allocative and technical efficiency which play important roles in the evaluation of screening programmes, and their impact on healthcare systems.

An AI-driven image analysis software which is fully-integrated in the radiologist’s pre-existing workflow can provide automatic results, without needing additional departmental resources. An additional benefit of fully-integrated AI solutions is that their use is not restricted by time or place, therefore supporting flexible and remote working. In the context of the COVID-19 pandemic, it’s been encouraging to see the increase in remote reporting, whilst maintaining a functioning department, in many hospital trusts. Going forward, it will be interesting to see whether radiologists will have the option to continue to work remotely where possible.

Valuing input from healthcare professionals

New lung cancer screening programmes will be monitored regularly to evaluate their effectiveness and determine areas for review. Commitment from all parties to work together will facilitate optimisation of the pathway to achieve better patient outcomes and positive impacts on healthcare systems.

In our experience, close collaboration between medtech and healthcare professionals is important for learning lessons along the way. Understanding radiologists’ needs helps tech teams develop a clinically valuable tool.

For example, Aidence’s interactive lung nodule reporting tool, Veye Reporting, was designed based on the needs of radiologists involved in reporting lung screening scans. From our conversations with them, we understood that following the detailed and complex reporting protocols in lung cancer screening programmes make for labour-intensive, repetitive tasks.

Veye reporting

To help them produce reports that follow the standardised NHSE proforma and facilitate audit for quality assurance, we added Veye Reporting as a feature to Veye Chest, focusing on making it easy-to-use and efficient. With this tool, the radiologists further have control over which nodules to include in the report, different sharing options, and the choice to add incidental findings.

What’s next?

Cancer services have been impacted by the COVID-19 health emergency. In the UK, screening has been paused and planning to (re-) start at the end of 2020 or beginning of 2021. Talks of introducing screening are ongoing in various European countries, as are concerns of catching up with the backlog of screening scans.

The British Society of Thoracic Imaging and the Royal College of Radiologists released these considerations for optimum lung cancer screening roll-out over the next five years. Their statement below is a reminder of why it is worth overcoming challenges and leveraging technology to make screening programmes a success:

BSTI_RCR statement

Dr Lizzie Barclay, Medical Director

Dr Lizzie Barclay’s areas of interest are thoracic radiology and medicine, innovation, and improving patient outcomes and healthcare professionals’ wellbeing.

Lizzie is originally from Manchester, UK. After graduating from the University of Leeds Medical School (MBChB), and Barts and the London School of Medicine (BSc sports & exercise medicine), Lizzie spent four years working as a doctor in Manchester and Liverpool NHS Trusts, including two years in Clinical Radiology. She has presented her work on lung cancer imaging at national/international conferences, and recently contributed to Lung Cancer Europe’s “Early Diagnosis and Screening” event at the EU Parliament in Brussels.

Homepage

You may be interested in the BIR Lung Cancer Imaging: Update for the not-so-new normalon 11 September 2020. This will be available for members in the BIR online learning libraryafter the live virtual event.

 

My first day in radiotherapy physics: reflections of a medical physicist

NHSIn 2010 Karen Goldstone was awarded the MBE for her services to healthcare. Here she reflects on the primitive tools used for radiotherapy patient outlines back in the 1970s and remembers the wise advice she was given on her first day as a radiotherapy physicist.

BIR

I started work in the NHS as a Hospital Physicist in 1970. Prior to that I did the MSc in radiation Physics based at Middlesex Hospital. When doing a placement in nuclear medicine, computer tapes had to be taken to University College about a fifteen minute walk to the other side of Tottenham Court Road and fetched the next day hopefully having run successfully.

In my first post I expected to be doing mainly diagnostic radiology physics but discovered that that was rather a luxury field and so most of my time was spent doing radiotherapy physics. Those were the days when patient outlines were taken using a strip of lead or a flexicurve and planning was done using tracing paper and coloured pencils or biros. There was no computer planning of course and we only had one calculator with a paper roll print out so slide rules were in constant use. The main piece of advice I remember receiving on my first day was that if I discovered I had made a mistake I should own up to it straight away and not seek to cover it up – very wise words.

When not doing radiotherapy physics many hours were spent reading out film densities produced using our homemade “Ardran Cassette” in order to check kVp. This was the beginning of setting up a quality control programme for X-ray units. Another time-consuming activity was sealing lithium borate powder into plastic capsules in order to measure dose to radiologists, carrying out various procedures under fluoroscopic control, and subsequently reading the doses received.

Although diagnostic radiology physics was not seen as important it was an exciting time and I was fortunate enough to hear Godfrey Hounsfield give the 1972 MacRobert Award lecture on “Computerised Transverse Axial Tomography” – an invention that has revolutionised diagnostic imaging.

I started my second post in 1974 in a smaller department but with responsibilities in other, far-flung, hospitals. Here I was the radiotherapy physicist (the only one) and also covered diagnostic radiology and radiation protection, but because it was a smaller department and staff had to be versatile I also did some nuclear medicine and even once some ultrasound.

In the peripheral hospitals in my patch one was still using wet developing, one using just a fluorescent screen for fluoroscopic procedures and one an image intensifier viewed not via a camera but via a mirror arrangement.

How times have changed!


About Karen Goldstone MBE

I worked for forty years in the NHS, in radiotherapy physics, diagnostic X-ray physics and all aspects of radiation protection. In 1983 I set up the East Anglian Regional Radiation Protection Service (EARRPS) based at Addenbrooke’s Hospital in Cambridge, and ran it for almost 30 years. I was both a Radiation Protection Adviser and Laser Protection Adviser. I gave physics lectures to radiologists and was a physics examiner for FRCR both in the UK and Malaysia. With colleagues in EARRPS and Cambridge University I ran a number of Radiation Protection Supervisor courses and gave countless IRMER courses to reluctant clinical staff. I was exceedingly surprised to be awarded the MBE in 2010 for services to healthcare.

Since retiring I have taken up rowing and become a Level 2 rowing coach; I have given two courses on Radiation and Health to the University of the Third Age in Cambridge and am otherwise kept busy with my garden, allotment, grandchildren and church activities. I am still involved on one or two committees for medical physics and radiological protection.

Neuroimaging assessments in dementia

Vanessa Newman
Dr Vanessa Newman

Dementia is the leading cause of disability in people over 60 years old. Imaging is increasingly used to diagnose dementia to complement physical, cognitive and mental examinations.

Here, Dr Vanessa Newman explores the role of imaging in detecting this cruel and debilitating illness that effects over one million people in the UK.

Dementia: a global burden

Dementia is a leading cause of disability in people aged >60 years, representing a significant burden on patients in terms of quality of life, disability and mortality associated with the condition. This further impacts caregivers, health services and society in general. According to the World Alzheimer Report 2015, it is estimated there are 46.8 million people living with dementia worldwide and this number is due to double every 20 years. Of the 9.2 million people with dementia in Europe over 1.03 million live in the UK, representing a considerable health economic burden. Furthermore, general improved life expectancy of the global population is anticipated to correspond with increased prevalence of dementia.[1,2]

The impact of dementia on informal caregivers – such as family members and friends – is substantial and can result in physical and mental illness, social isolation and poor quality of life for them. Although their participation in the care of dementia patients may alleviate burden on healthcare systems and residential care homes, informal caregiving is not without societal costs caused by absenteeism from work.[2]

Different forms of dementia

Dementia is a progressive illness that affects not only a person’s memory but also their behaviour, mood, cognition and ability to perform daily activities. Progression of dementia is associated with both genetic predisposition and lifestyle factors, including smoking, alcohol, exercise and diet. There are a number of different dementia subtypes with varying incidence in the population, including vascular dementia (VaD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Parkinson’s dementia (PD) and mixed dementia. However, Alzheimer’s disease (AD) is the most prevalent form, representing 62% of the dementia population.[3–6]

Diagnosing dementia

Although the majority of patients are diagnosed with dementia in later life, evidence shows that irreversible, pathological changes within the brain occur long before the onset of clinical symptoms. Gradual changes within the brain lead to progressive cognitive impairment and patients often experience a transitional period of mild cognitive impairment (MCI), during which a differential diagnosis may not be possible.[3,7–10]

Formal assessment of cognitive decline, as undertaken by dementia experts, usually includes physical, cognitive and mental examinations [e.g. the Mini Mental State Examination (MMSE)], plus a review of education and functional levels, medications and health history.[4,11]

Dementia assessment using brain biomarkers and structural imaging

There are several protein deposition biomarkers that may be used to assist in a diagnosis of dementing diseases, such as the presence of TDP-43 (FTD), Lewy bodies (DLB), alpha-synuclein (Parkinson’s disease), plus tau and β-amyloid which are typical in the pathogenesis of Alzheimer’s disease (although not exclusive to this dementia subtype).[12,13] Historically, reliable diagnoses might only be made post-mortem using histopathology. However, increasingly the imaging of biomarkers or their effect on the living brain can be made earlier on in the course of disease, before evidence of memory impairment is seen.[12,13]

Piramal blog image 1

Fig 1. Source: Jovalekic et al. EJNMMI Radiopharmacy and Chemistry (2017) 1:11. doi:10.1186/s41181-016-0015-3 (Copyright held by Piramal Lifesciences).

Cerebrospinal fluid (CSF) sampling via lumbar puncture can help detect abnormal levels of soluble β‑amyloid42, total tau (T-tau) and phosphorylated tau (p-tau181), which may assist during the diagnostic workup of dementia patients being assessed for AD.[14] However, lumbar puncture is an invasive method and some patients may refuse the procedure or are contraindicated, for example, if they receive anticoagulant medications. In addition, CSF-based analyses show variability between immunoassay platforms and biomarker concentrations, which may present challenges to clinicians.[14–17]

Brain imaging in patients can assist a clinical diagnosis by examining presence of cerebral pathologies and structural changes, including MRI and CT that can detect subcortical vascular changes. Single-photon emission CT (SPECT) measuring perfusion can help differentiate AD, VaD and FTD,[4,11] while 2-(18F)Fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) may assist in detecting impaired neuronal activity by measuring the cerebral metabolic rate of glucose. This has been used to detect abnormal patterns in the brain and the potential to predict conversion from MCI to AD or the diagnosis of AD has been demonstrated.[8,9,18–20] Both SPECT-perfusion imaging and FDG-PET are indirect measures of disease that detect characteristic changes in glucose and oxygen metabolism. However, these imaging modalities show limitations in reflecting the aetiology of prodromal or mild AD.[8,9,11,19,20]

Brain β-amyloid (Aβ) deposition and plaque formation occurs early in the pathogenesis of AD, therefore offering the potential to assist in an early clinical diagnosis of patients being evaluated for Alzheimer’s dementia and other forms of cognitive impairment. Amyloid-PET is a relatively recent imaging modality and three 18F-labelled imaging agents are licensed for use in the EU that can detect the presence of β-amyloid neuritic plaques in the living brain, with validated visual assessment methods using histopathology as the standard of truth (Fig.2).[13,21] According to published appropriate use criteria, amyloid-PET is considered to have greatest utility in a subset of dementia patients:[22–24]

  • where there is an established persistent or progressive unexplained memory impairment (unclear diagnosis); or
  • where brain Aβ is a diagnostic consideration based on core clinical criteria, and where knowledge of this pathology may alter patient management; or
  • with progressive dementia and atypical age of onset (usually <65 years of age).

Piramal blog image 2

Fig 2: 18F-labelled imaging agents have the ability to detect the presence of β-amyloid neuritic plaques in the living brain (immunohistochemistry with monoclonal 6E10 Aβ antibody).[13]

Fig. 2: Source: Jovalekic et al. EJNMMI Radiopharmacy and Chemistry (2017) 1:11. doi:10.1186/s41181-016-0015-3 (Copyright held by Piramal Lifesciences).

Amyloid-PET does not alone provide a diagnosis, rather it forms part of the greater assessment workup by clinical experts, including neurologists, psychiatrists and geriatricians. The knowledge of the presence or absence of β-amyloid plaques has been shown to support a confident differential diagnosis and a tailored patient care plan, including use of medications where appropriate. There is also added value for patients and their caregivers in knowing the cause of dementia, enabling decision-making and planning for the future including the possibility of enrolling into clinical trials.[5,6,8,22–28]

 The future of diagnostic imaging

The National Institute for Health and Care Excellence (NICE) is reviewing guidance on the organisation and delivery of diagnostic services, due for publication in August 2017. The scope of the revised guidance will encompass imaging in neurodegenerative diseases, as part of the wider radiology/nuclear medicine service in the NHS. This will affect not only patients, but all staff who use, refer and interpret diagnostic services in both primary, secondary and tertiary care.[29]

Author: Vanessa Newman (MD-V, PhD), Medical Affairs Director at Piramal Imaging Ltd

References

  1. Alzheimer-Europe, The prevalence of dementia in Europe. 2015, Alzheimer Europe: Luxembourg.
  2. Prince, M., World Alzheimer Report 2015: The Global Impact of Dementia – an analysis of prevalence, incidence, cost and trends, A.s.D.I. (ADI), Editor. 1015: London.
  3. Prince, M., World Alzheimer Report 2014: Dementia and Risk Reduction – an analysis of protective and modifyable factors, A.s.D. International, Editor. 2014, Alzheimer’s Disease International (ADI): London, UK.
  4. NICE, Clinical guideline 42: Dementia: Supporting people with dementia and their carers in health and social care. 2006, National Institute for Health and Care Excellence (NICE): London, UK.
  5. Deckers, K., et al., Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry, 2015. 30(3): p. 234-46.
  6. Kivipelto, M. and F. Mangialasche, Alzheimer disease: To what extent can Alzheimer disease be prevented? Nat Rev Neurol, 2014. 10(10): p. 552-3.
  7. Catafau, A.M. and Bullich, S., Amyloid PET imaging: applications beyond Alzheimer’s disease. Clin Transl Imaging, 2015. 3(1): p. 39-55.
  8. Sabri, O., et al., Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement, 2015. 11(8): p. 964-74.
  9. Sabri, O., et al., Beta-amyloid imaging with florbetaben. Clin Transl Imaging, 2015. 3(1): p. 13-26.
  10. Vos, S.J., et al., Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology, 2013. 80(12): p. 1124-32.
  11. Bloudek, L.M., et al., Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis, 2011. 26(4): p. 627-45.
  12. Sperling, R.A., Karlawish, J., and Johnson K.A., Preclinical Alzheimer disease-the challenges ahead. Nat Rev Neurol, 2013. 9(1): p. 54-8.
  13. Jovalekic, A., et al., New protein deposition tracers in the pipeline. EJNMMI Radiopharmacy and Chemistry, 2017. 1(1).
  14. Roe, C.M., et al., Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology, 2013. 80(19): p. 1784-91.
  15. Dubois, B., et al., Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 2014. 13(6): p. 614-629.
  16. Perret-Liaudet, A., et al., Risk of Alzheimer’s disease biological misdiagnosis linked to cerebrospinal collection tubes. J Alzheimers Dis, 2012. 31(1): p. 13-20.
  17. Kang, J.H., et al., Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease biomarkers. Clin Chem, 2013. 59(6): p. 903-16.
  18. Ng, S., et al., Visual Assessment Versus Quantitative Assessment of 11C-PIB PET and 18F-FDG PET for Detection of Alzheimer’s Disease. Journal of Nuclear Medicine, 2007. 48(4): p. 547-552.
  19. Perani, D., et al., A survey of FDG- and amyloid-PET imaging in dementia and GRADE analysis. Biomed Res Int, 2014. 2014: p. 785039.
  20. Piramal, NeuraCeq (florbetaben 18F) Summary of Product Characteristics. 2015, Piramal Imaging Ltd.
  21. EMA. Human Medicines: European public assessment reports. 2016 [cited 2016 July]; Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d124.
  22. Johnson, K.A., et al., Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement, 2013. 9(1): p. e-1-16.
  23. Johnson, K.A., et al., Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med, 2013. 54(7): p. 1011-3.
  24. Scarsbrook, A. and Barrington S., Evidence-based indications for the use of PET-CT in the United Kingdom 2016, R.C.o.P. Royal College of Radiologists, Editor. 2016, RCR, RCP: London, UK.
  25. Bang, J., Spina, S., and Miller, B.L., Frontotemporal dementia. The Lancet, 2015. 386(10004): p. 1672-1682.
  26. Kobylecki, C., et al., A Positron Emission Tomography Study of [18f]-Florbetapir in Alzheimer’s Disease and Frontotemporal Dementia. Journal of Neurology, Neurosurgery & Psychiatry, 2013. 84(11): p. e2-e2.
  27. Barthel, H., Seibyl, J., and Sabri O., The role of positron emission tomography imaging in understanding Alzheimer’s disease. Expert Rev Neurother, 2015. 15(4): p. 395-406.
  28. Pontecorvo, M.J., et al., A randomized, controlled, multicenter, international study of the impact of florbetapir (<sup>18</sup>F) PET amyloid imaging on patient management and outcome. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 11(7): p. P334.
  29. NICE. Dementia – assessment, management and support for people living with dementia and their carers: GUIDANCE. NICE Guidance 2016 [cited 2016 June]; Available from: https://www.nice.org.uk/guidance/indevelopment/gid-cgwave0792.

About Vanessa Newman

Vanessa’s background is in neurology (epilepsy and Down’s syndrome) and more recently in the field of neuroimaging in dementia. She has worked at Piramal Imaging since early 2015 and during this time has had the pleasure of seeing how quickly this area of medicine is moving, with increasing methods and imaging diagnostics available for use with people living with dementia.

Date of preparation: July 2016. ©Piramal Imaging Ltd. UK/FBB/1015/0021

Piramal Imaging Ltd, Langstone Technology Park, Langstone Road, Havant, Hampshire PO9 1SA, United Kingdom

Piramal Imaging Ltd medical information enquiries: Medicalaffairs.imaging@piramal.com
Piramal Imaging Ltd media enquiries: inquiries.imaging@piramal.com

Piramal is a British Institute of Radiology corporate member.

Piramal logo

Has imaging become too effective?

Adrian Dixon

Professor Adrian Dixon has a worldwide reputation as an academic and a radiologist and has published extensively on body and musculoskeletal CT and MR imaging.

He will deliver the BIR Toshiba Mayneord Eponymous Lecture called “Has imaging become too effective?” at UKRC on 7 June 2016 at 13:00.

Read this fascinating interview with him and get a taster of this “not-to-be-missed” presentation.

You will be delivering the BIR Toshiba Lecture at UKRC this June. Your lecture is called “Has imaging become too effective?” Can you give us a “taster” of what you mean by this?

“You should say what you mean!” as the March Hare said in “Alice’s Adventures in Wonderland”.

What do people mean by “effective”? Effectiveness is only an appropriate term if qualified. Modern imaging certainly is effective at increasing the diagnostic confidence about a diagnosis and excluding certain diagnostic possibilities. It has taken a long while to prove that it is effective in saving lives. It has become so effective that, in many conditions, an image can be rendered to make the diagnosis obvious to the man in the street.

And clinicians now tend to refer for imaging without stopping to think! It has also become so effective in demonstrating probably innocuous lesions that the worried well can become even more of a hypochondriac! In some societies this can lead to over usage, excessive radiation exposure and increased costs.

If imaging is “too effective” – is radiology still a worthwhile career choice?

Yes! It is the most fascinating of all medical careers and every day a radiologist should see something that he or she has never quite seen before. The radiologist is the ultimate medical detective and cannot conceivably get bored. Indeed radiologists get reimbursed to solve crossword puzzles on elaborate play stations!

What have been the three biggest challenges for you in your career?

Radiologists have had to learn and relearn their skills at frequent intervals during their careers. Radiology will only survive as a specialty if the radiologist knows more about the images, the technical aspects and the interpretative pitfalls than their clinical colleagues.

Did you ever meet Godfrey Hounsfield (inventor of CT imaging) and what were your memories of him?

opening of scannerI did indeed meet Sir Godfrey on numerous occasions. His humility and “boffin style” of science greatly appealed. Some of the stories at the numerous events surrounding his memorial service were truly fascinating, including his inability to accept any machine which he could not understand without taking it to bits and then reassembling it!

 

Given the financial pressures on healthcare, will the required investment in the latest imaging technology be affordable?

Some of the developments in personalised medicine may be unaffordable. Generic contrast agents will continue to be used in large volumes. The cost of creating “one off” agents may prove unjustifiable.

Why would you encourage someone to join the BIR?

Because of the fun of interdisciplinary discussion and the pride of being a small part of the oldest radiological society!

Does spending more money on equipment mean a better health service?

I passionately believe that prompt access to imaging makes a major contribution to excellent healthcare. But that does not necessarily mean that every hospital has to have every machine at the top of the range. A rolling programme of equipment replacement is an essential part of delivering a high-quality radiological service.

The most difficult thing I’ve dealt with at work is…

An electrical power cut during the middle of a tricky adrenal CT-guided biopsy!

If Wilhelm Roentgen could time travel to Addenbrooke’s hospital, what would he be most impressed with?

The sheer size and the number of staff of the radiology department!

When its 2050, what will we say is the best innovation of the 21st century in healthcare?

Data mining and health statistics.

Who has been the biggest influence on your life? What lessons did that person teach you?

All my previous bosses have influenced my career. I have learnt something from each of them. All of them stimulated me to ask the question “why are we doing things this way”? “Can it be done better”?

My proudest achievement is…

Helping to make the Addenbrooke’s Radiology department one of the most modern in the UK.

What advice would you pass on to your successor?

Never give up, try, try and try again and remember “the more you practice, the luckier you get”.

What is the best part of your job?

That I have been lucky to have had a succession of challenges in the various roles that I have held, all of which have kept me on my toes.

What is the worst part of your job?

Leaving salt of the earth friends as I have moved from role to role.

If you could go back 20 years and meet your former self, what advice would you give yourself?

Do not worry so much – it will all be alright on the night.

Adrian Dixon

Adrian Dixon

What might we be surprised to know about you?

That I support Everton Football Club.

How would you like to be remembered?

For influencing the careers of younger colleagues – hopefully to their benefit!

260215 opening

Professor Dixon will deliver the BIR Toshiba Mayneord Eponymous Lecture called “Has imaging become too effective?” at UKRC on 7 June 2016 at 13:00.

Book your place at UKRC (early bird rate ends 15 April 2016)

 

Toshiba-leading-innovation-jpg-large Thank you to Toshiba for supporting the BIR Mayneord Eponymous Lecture

 

 

Making the case for radiographer reporting

SONY DSC

With a steady and sustained rise in imaging workloads driven by an ageing population, new and evolving technologies, and a drive for patient-focused care, radiology departments are turning to new ways to provide services. Nick Woznitza, Clinical Academic Reporting Radiographer at Homerton University Hospital, east London, and Canterbury Christ Church University, Kent, makes the case for radiology departments meeting these ever-increasing demands through radiographer reporting.

Using the example of his experience in the neonatal department of Homerton University Hospital he explains how, with robust research and training, and the appropriate use of skill mix, departments can offer a safe, efficient and patient-focused service.

Expansion of the neonatal medicine department at Homerton produced an increase in plain imaging workload and, coupled with a shortage of consultant paediatric radiologists, meant that the neonatal X-rays did not receive a timely definitive radiology report. The neonatal unit is a large, tertiary referral facility with 46 cots, 900 admissions and 13,600 cot/days per annum in 2013–2014. In order to provide an optimal service to these vulnerable patients, it was agreed to develop a radiographer-led plain imaging neonatal reporting service.

A bespoke, intensive training programme was designed in collaboration with radiology and neonatal medicine at Homerton, Canterbury Christ Church University and the paediatric radiology department of the Royal London Hospital. The radiographer was already an established reporting radiographer, interpreting skeletal and adult chest X-rays in clinical practice, so the training programme focused on the unique physiology and pathology of neonates. Training consisted of self-directed learning, pathology and film viewing tutorials, practice reporting, and attendance at the neonatal X-ray meeting at the Royal London Hospital. This immersive experience was achieved via secondment for one and a half days a week.
Upon qualification of the reporting radiographer, all reports were double read by a consultant paediatric radiologist, to successfully manage the transition into practice whilst maintaining patient safety in line with best practice recommendations.

To ensure that the performance of the trained reporting radiographer was comparable to that of a consultant paediatric radiologist a small research study was conducted (Woznitza et al, 2014), supported by research funding from the International Society of Radiographers and Radiographic Technologists (ISRRT). This study confirmed only a small number of clinically significant reporting radiographer discrepancies (n = 5, 95% accuracy), comparable to the performance of the paediatric radiologists. This study provided further evidence that the introduction of radiographer neonatal plain imaging reporting has not adversely impacted patient safety or care.

Activity figures (July 2011 – September 2014) were obtained from the radiology information system to determine the number of X-ray examinations performed and the proportion receiving a radiographer report. An average of 285 X-rays were performed each month, however, there was a marked increase in March 2012 from 158/month (July 2011 – February 2012) to 328/month (March 2012 – September 2014). The radiographer has made a sustained, significant contribution to the reporting service, interpreting an average of 92.5% of the X-ray examinations and responsible for >95% of examinations in 20 of the 36 months.

Building on the collaboration between radiology and neonatal medicine, a weekly neonatal X-ray meeting was introduced. Facilitated by the reporting radiographer and paediatric radiologist, this forum has increased radiology–clinician engagement and in turn patient care, facilitated discussions and acts as an excellent educational resource. Recognising the importance of this meeting, the senior neonatal clinicians requested that the reporting radiographer convene the meeting when the paediatric radiologist is absent on leave.

The introduction of a radiographer neonatal X-ray reporting service demonstrates that, with collaboration and support, novel approaches can help provide solutions to increasing activity in radiology in an effective, efficient and patient focused manner without compromise on patient safety. Collaboration and team work are fundamental when undertaking service delivery change. The support of both the radiology department, under the leadership of Dr Susan Rowe, and the neonatal unit, led by Dr Zoe Smith with mentorship from Dr Narendra Aladangady, has been essential in the success of this service.

Nick Woznitza biography
Nick qualified as a diagnostic radiographer from the University of South Australia and, following several roles in rural and remote Australia, moved to the UK in 2005.

An accredited consultant radiographer with the College of Radiographers, Nick reports a range of plain imaging examinations including skeletal, chest and neonatal X-rays. He has recently taken up a clinical academic radiography role at Homerton University Hospital and Canterbury Christ Church University, with this blended role facilitating image interpretation teaching to radiographers and other health professionals and his research into the accuracy and impact of radiographer reporting.

Reference
Woznitza N, Piper K, Iliadis K, Prakash R, Santos R, Aladangady N. Agreement In Neonatal X-ray Interpretation: A Comparison Between Consultant Paediatric Radiologists and a Reporting Radiographer. International Society of Radiographers and Radiographic Technologists 18th World Congress. June 2014; Helsinki, Finland, 2014.

How imaging technology can help tackle the funding challenge facing healthcare

Karl Blight high resKarl Blight, UK and Ireland General Manager at GE Healthcare considers how imaging technology can help tackle the funding challenge facing healthcare

NHS England’s recent strategy paper, ‘A Call to Action’ [1] Identified a potential £30 billion funding gap between spending and resources by 2020-21 if services continue to be delivered as they are now. This challenge will require significant changes in how healthcare is provided so that productivity can be improved and costs reduced.

While much attention will be paid to structural changes around how the NHS is organised, and to where and how patients access healthcare and are treated, funding decision makers need to recognise that investment in appropriate technology can make a major contribution to improving the efficiency of the healthcare system. There is a general misconception that the up-front cost of healthcare technology is prohibitive and, at a time of economic austerity, should be amongst the first areas to be constrained. But, this can be a false economy. Persisting with older technology can lead to higher maintenance costs, disrupted patient appointments due to increased downtime and slower scans, while newer equipment can increase productivity with higher uptimes and better quality images that enable more confident diagnoses and make repeat scans less likely.

Meanwhile, some newer scanners feature state-of-the-art technology that can help save time for clinicians and reduce the burden of paperwork, for example connecting to field engineers who help solve issues remotely so that clinicians can focus on providing patient care. In addition, many medical device manufacturers are investing in the development of new products which have been engineered to meet specific needs at a lower price point. Many are specifically designed to be portable and efficient to operate for the user. Not all situations require the high end technology, and manufacturers are providing equipment that can be tailored to the particular needs of the user or service.

Revolutionary developments in medical technology encompass not only the physical kit. The rise of digitisation, particularly in imaging and in data analysis, transfer and management, is good for the patient and also has huge potential to boost productivity. The combination of big data analytics and clinical information is helping healthcare professionals to identify issues, design solutions and implement patient and system level changes much faster than previously possible. There is a vast reserve of data in healthcare and we are only at the beginning of making the most of it.

The medical device industry, by investing in the development of new technologies, is playing an important role in helping practitioners to deliver better, more cost effective care to patients. Clinicians and technology providers alike now need to ensure that UK healthcare budget holders don’t just focus on the perceived costs associated with new equipment, and instead understand and recognise the value, productivity potential and long term benefits that investing in appropriate technology can bring, both to improving patient care, and to helping the NHS meet its funding gap.

[1] http://www.england.nhs.uk/2013/07/11/call-to-action/